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Abstract. Function contracts are a well-established way of formally specifying
the intended behavior of a function. However, they usually only describe what
should happen during a single call. Relational properties, on the other hand, link
several function calls. They include such properties as non-interference, conti-
nuity and monotonicity. Other examples relate sequences of function calls, for
instance, to show that decrypting an encrypted message with the appropriate key
gives back the original message. Such properties cannot be expressed directly in
the traditional setting of modular deductive verification, but are amenable to ver-
ification through self-composition. This paper presents a verification technique
dedicated to relational properties in C programs and its implementation in the
form of a FRAMA-C plugin called RPP and based on self-composition. It sup-
ports functions with side effects and recursive functions. The proposed approach
makes it possible to prove a relational property, to check it at runtime, to generate
a counterexample using testing and to use it as a hypothesis in the subsequent
verification. Our initial experiments on existing benchmarks confirm that the pro-
posed technique is helpful for static and dynamic analysis of relational properties.

Keywords: relational properties, specification, self-composition, deductive veri-
fication, dynamic verification, Frama-C

1 Introduction

Context. Deductive verification techniques provide powerful methods for formal verifi-
cation of properties expressed in Hoare Logic [11,12]. In this formalization, also known
as axiomatic semantics, a program is seen as a predicate transformer, where each in-
struction S executed on a state verifying a property P leads to a state verifying another
property Q. This is summarized in the form of Hoare triples as {P}S{Q}. In this set-
ting, P and Q refer to states before and after a single execution of a program S. It is
possible in Q to refer to the initial state of the program, for instance to specify that
S has increased the value stored in variable x, but one cannot express properties that
refer to two distinct executions of S, even less properties relating executions of differ-
ent programs S1 and S2. As will be seen in the next sections, such properties, that we
will call relational properties in this paper, occur quite regularly in practice. Hence,



it is desirable to provide an easy way to specify them and to verify that implementa-
tions are conforming to such specification. A simple example of a relational property is
monotonicity of a function f : x < y ⇒ f(x) < f(y).

Several theories and techniques exist for handling relational properties. First, Rela-
tional Hoare Logic [6] is mainly used to show the correctness of program transforma-
tions, i.e. the fact that the result of the transformation preserves the original semantics
of the code. Then, Cartesian Hoare Logic [19] allows for the verification of k-safety
properties, that is, properties over k calls of a function. The DESCARTES tool is based
on Cartesian Hoare Logic and has been used to verify anti-symmetry, transitivity and
extensionality of various comparison functions written in Java. A decomposition tech-
nique using abstract interpretation is presented in [1] for verification of k-safety prop-
erties. The method is implemented in a tool called BLAZER and used for verification
of non-interference and absence of timing channel attacks. A relational program rea-
soning based on an intermediate program representation in LLVM is proposed by [13].
The method supports loops and recursive functions and is used for checking program
equivalence. Finally, self-composition [3] and its refinement Program Products [2] pro-
pose theoretical approaches to prove relational properties by reducing the verification
of relational properties to a standard deductive verification problem.

Motivation. In the context of the ACSL specification language [5] and the deductive
verification plugin WP of FRAMA-C [14], the necessity to deal with relational prop-
erties has been faced in various verification projects. For example, we can extract the
following quote from a work on verification of continuous monotonic functions in an
industrial case study on smart sensor software [7] (emphasis ours):

After reviewing around twenty possible code analysis tools, we decided to use
FRAMA-C, which fulfilled all our requirements (apart from the specifications
involving the comparison of function calls).

The authors attempt to prove the monotonicity of some functions (i.e., if x ≤ y then
f(x) ≤ f(y)) using FRAMA-C/WP plugin. To address the absence of support for rela-
tional properties in ACSL and WP, they perform a manual transformation [7] consist-
ing in writing an additional function simulating the call to the related functions in the
property. Broadly speaking, this amounts to manually perform self-composition. This
technique is indeed quite simple and expressive enough to be used on many relational
properties. However, applying it manually is relatively tedious, error-prone, and does
not provide a completely automated link between three key components: (i) the spec-
ification of the property, (ii) the proof that the implementation satisfies the property,
and (iii) the ability to use the property as hypothesis in other proofs (of relational as
well as non-relational properties). Thus, the lack of support for relational properties
can be a major obstacle to a wider application of deductive verification in academic
and industrial projects. Finally, another motivation of this work was to obtain a solution
compatible with other techniques than deductive verification, notably dynamic analysis.

Contributions. To address the absence of support for expressing relational properties in
ACSL and for verifying such properties in the FRAMA-C platform, we implemented a



new plugin called RPP. This plugin allows the specification and verification of proper-
ties invoking any (finite) number of calls of possibly dissimilar functions with possibly
nested calls, and to use the proved properties as hypotheses in other proofs. A pre-
liminary version of RPP has been described in a previous short paper [8]. However,
it suffered from major limitations. Notably, it could only handle pure, side-effect free
functions, which in the context of the C programming language is an extremely severe
constraint. Similarly, the original syntax to express relational properties is not expres-
sive enough and requires some additional constructs, in order to properly specify rela-
tional properties of functions with side-effects. The previous work [8] did not address
dynamic analysis of relational properties either.

The current paper will thus focus on the extensions that have been made to the orig-
inal RPP design and implementation, as well as its evaluation. Its main contributions
include:

– a new syntax for relational properties;
– handling of side effects;
– handling of recursive functions;
– evaluation of the approach over a suitable set of illustrative examples;
– experiments with runtime checking of relational properties and counterexample

generation when a property cannot be proved in the context of RPP.

Outline. The remainder of this paper is organized as follows. First, in Section 2 we
briefly recall the general idea of relational property verification with RPP in the case
of pure functions using self-composition. Then, in Section 3, we show how to extend
this technique to the verification of relational properties over functions with side effects
(access to global variables and pointer dereference). Another extension, described in
Section 4 allows considering recursive functions. We demonstrate the capacities of RPP
by using it on the adaptation to C of the benchmark proposed for Java in [19] and our
own set of test examples (Section 5). Finally, we show in Section 6 that RPP can also
be used to check relational properties at runtime and/or to generate a counterexample
using testing, and conclude in Section 7.

2 Context and Main Principles

RPP (Relational Property Prover) is a solution designed and implemented as a plugin
of FRAMA-C [14], an extensible framework dedicated to the analysis of C programs.
FRAMA-C offers a specification language, called ACSL [5], and a deductive verifica-
tion plugin, WP [4], that allow the user to specify the desired program properties as
function contracts and to prove them. A typical ACSL function contract may include a
precondition (requires clause stating a property that must hold each time the func-
tion is called) and a postcondition (ensures clause that must hold when the function
returns), as well as a frame rule (assigns clause indicating which parts of the global
program state the function is allowed to modify). assigns clauses may be refined by
\from directives, indicating for each memory location l potentially modified by the
function the list of memory locations that are read in order to compute the new value



of l. Finally, an assertion (assert clause) can also specify a local property at any
function statement.

WP is based on Hoare logic and generates Proof Obligations (POs) using Weakest
Precondition calculus: given a property Q and a fragment of code S, it is possible to
compute the minimal (weakest) condition P such that {P}S{Q} is a valid Hoare triple.
When S is the body of a function f , POs are formulas expressing that the precondition
of f implies the weakest condition necessary for the postcondition (or assertion) to
hold after executing S. POs can then be discharged either automatically by automated
theorem provers (e.g. Alt-Ergo, CVC4, Z33) or with some help from the user via a proof
assistant (e.g. Coq4).

FRAMA-C also offers an executable subset of ACSL, called E-ACSL [10,18], that
can be transformed into executable C code. It is thus compatible with dynamic analysis,
such as runtime assertion checking of annotations using the E-ACSL plugin [10,20]
or with counterexample generation (in case of a proof failure) using the STADY plu-
gin [16,17].

Function contracts allow specifying the behavior of a single function call, that is,
properties of the form “If P (s) is verified when calling f in state s, Q(s′) will be
verified when f returns with state s′”. However, it is not possible to specify relational
properties, that relate several function calls. Examples of such properties include mono-
tonicity (x < y ⇒ f(x) < f(y)), anti-symmetry (compare(x, y) = −compare(y, x))
or transitivity (compare(x, y) ≤ 0∧ compare(y, z) ≤ 0⇒ compare(x, z) ≤ 0). RPP
addresses this issue by providing an extension to ACSL for expressing such properties
and a way to prove them. More specifically, RPP works like a preprocessor for WP:
given a relational property and the definition of the C function(s) involved in the prop-
erty, it generates a new function together with plain ACSL annotations whose proof
(using the standard WP process) implies that the relational property holds for the orig-
inal code. As we show below, this encoding of a relational property is also compatible
with dynamic analysis (runtime verification or counterexample generation).

2.1 Original Relational Specification Language

For the specification of a relational property, we initially proposed an extension [8] of
the ACSL specification language with a new clause, relational. These clauses are
attached to a function contract. A property relating calls of different functions, such
as R1 in Figure 1a, must appear in the contract of the last function involved in the
property, i.e. when all relevant functions are in scope. In this new clause we intro-
duced a new construct \call(f,<args>), denoting the value returned by the call
f(<args>) to f with arguments <args>. This allows relating several function
calls in a relational clause. \call can be used recursively, i.e. a parameter of a
called function can be the result of another function call. In Figure 1a, properties R1 and
R2 at lines 7–9 and 15–17 specify properties of functions max and min respectively.

3 See, resp., https://alt-ergo.ocamlpro.com, http://cvc4.cs.nyu.edu,
https://z3.codeplex.com/

4 See http://coq.inria.fr/

https://alt-ergo.ocamlpro.com
http://cvc4.cs.nyu.edu
https://z3.codeplex.com/
http://coq.inria.fr/


1 /*@ requires x > INT_MIN;
2 assigns \nothing;
3 behavior pos:
4 assumes x ≥ 0;
5 ensures \result == x;
6 behavior neg:
7 assumes x < 0;
8 ensures \result == -x;*/
9 int abs (int x){

10 return (x ≥ 0) ? x : (-x);
11 }
12

13 /*@ requires INT_MIN < x+y < INT_MAX;
14 assigns \nothing;
15 relational R1: ∀ int x,y;
16 \call(max,x,y) ==
17 (x+y+\call(abs,x - y))/2; */
18 int max(int x,int y){
19 return (x ≥ y) ? x : y;
20 }

(a) Original source code

1 /*@ axiomatic Relational_axiom {
2 logic int max_acsl(int x, int y);
3 logic int abs_acsl(int x);
4 lemma Relational_lemma{L}:
5 ∀ int x, int y;
6 max_acsl(x, y) ==
7 ((x + y) + abs_acsl(x - y)) / 2;
8 }*/
9

10 void relational_wrapper(int x, int y){
11 int ret_var_1, ret_var_2;
12 ret_var_1 = (x ≥ y) ? x : y;
13 ret_var_2 = (x-y ≥ 0) ? x-y : (-(x-y));
14 /*@ assert
15 ret_var_1 ==
16 ((x + y) + ret_var_2) / 2; */
17 return;
18 }
19

20 /*@ assigns \nothing;
21 behavior Relational_behavior:
22 ensures
23 \result ==
24 max_acsl(\old(x), \old(y));
25 */
26 int max(int x, int y){ ... }

(b) Excerpt of the code generated by RPP

Fig. 1: Pure function with relational properties

Note however that the \call construct only allows speaking about the return value
of a C function. If the function has some side effects, there is no way to express a relation
between the values of memory locations that are modified by distinct calls. Section 3
describes the improvements that have been made to the initial version of the relational
specification language in order to support side effects. To ensure that a function has no
side effects, an assigns \nothing clause can be used.

2.2 Preprocessing of a Relational Property

The previous work [8] also proposed a code transformation whose output can be ana-
lyzed with standard deductive verification tools. This is materialized in the RPP plugin
of FRAMA-C, that relies then on WP to prove the resulting standard ACSL annotations.

Going back to our example, applying the transformation to property R1 over func-
tion max gives the code of Figure 1b. The generated code can be divided into three parts.
First, a new function, called wrapper, is generated. The wrapper function is inspired by
the workaround proposed in [7] and self-composition [3]. As in self-composition, this
wrapper function inlines the calls occurring in the relational property under analysis,
with a suitable renaming of local variables to avoid interferences between the calls.

In addition, the wrapper records the results of the calls in fresh local variables. Then,
in the spirit of calculational proofs [15], we state an assertion equivalent to the relational
property (lines 14–16 in Figure 1b). The proof of such an assertion is possible with a
classic deductive verification tool (WP with Alt-Ergo as back-end prover in our case).



1 /*@ assigns \nothing;*/
2 int Crypt(int m,int key){
3 return m + key;
4 }
5

6 /*@ assigns \nothing;
7 relational R3:
8 ∀ int m, key;
9 \call(Decrypt,

10 \call(Crypt,m,key),
11 key)
12 == m;*/
13 int Decrypt(int m,int key){
14 return m - key;
15 }
16

17 /*@ assigns \nothing;
18 ensures \result == m;
19 relational R4:
20 ∀ int m,key;
21 \call(run,
22 \call(run,m,key),
23 key)
24 == m;*/
25 int run(int m,int key){
26 int crypt, decrypt;
27 crypt = Crypt(m,key);
28 decrypt = Decrypt(crypt,key);
29 return decrypt;
30 }

(a) Original source code

1 /*@ axiomatic Relational_axiom {
2 logic int run_acsl(int m, int key);
3

4 lemma Relational_lemma{L}:
5 ∀ int m, int key;
6 run_acsl(
7 run_acsl(m, key),
8 key)
9 == m; }*/

10

11 void relational_wrapper(int m, int key){
12 int tmp_1, tmp_2, tmp_3, tmp_4;
13 tmp_1 = Crypt_aux_2(m,key);
14 tmp_2 = Decrypt_aux_2(tmp_1,key);
15 tmp_3 = Crypt_aux_2(tmp_2,key);
16 tmp_4 = Decrypt_aux_2(tmp_3,key);
17 /*@ assert tmp_4 == m;*/
18 return; }
19

20 /*@ ensures \result == \old(m);
21 assigns \nothing;
22 behavior Relational_behavior:
23 ensures \result ==
24 run_acsl(\old(m), \old(key));*/
25 int run(int m, int key){
26 int crypt;
27 int decrypt;
28 crypt = Crypt(m,key);
29 decrypt = Decrypt(crypt,key);
30 return decrypt; }

(b) Transformed code

Fig. 2: Functions Crypt and Decrypt, used by function run.

However, the wrapper function only provides a solution to prove relational proper-
ties. The ability to use these properties as hypotheses in other proofs (relational or not)
must be reached otherwise. For this purpose, RPP generates an ACSL axiomatic defini-
tion (cf. axiomatic section at lines 1–8 in Figure 1b) introducing a logical reformu-
lation of the relational property as a lemma (cf. lines 4–7) over otherwise unspecified
logic functions (max_acsl and abs_acsl in the example). Furthermore, new post-
conditions are generated in the contracts of the C functions involved in the relational
property. They specify that there is an exact correspondence between the original C
function and its newly generated logical ACSL counterpart. Thanks to this axiomatic,
POs over functions calling max and abs will have the lemma in their environment and
thus will be able to take advantage of the proven relational property. Note that the corre-
spondence between max and max_acsl (respectively abs and abs_acsl) can only
be done because max and abs do not access global memory (neither for writing nor
for reading). Indeed, since max_acsl and abs_acsl are pure logic functions, they
do not have side effects and their result only depends on their parameters.

To illustrate the use of relational properties in the proof of other specifications, we
can consider the postcondition and property R4 of function run of Figure 2a (inspired
by the PISCO project5) whose proof needs to use property R3. Thanks to their refor-

5 See http://www.projet-pisco.fr/.

http://www.projet-pisco.fr/


1 /*@ assigns \result \from x, y;
2 relational R1:
3 \forall int x1, y1;
4 \callset(\call(max, x1, y1, id1),\call(abs, x1 - y1, id2)) ==>
5 \callresult(id1) == (x1 + y1 + \callresult(id2)) / 2;
6 */
7 int max(int x,int y) { ... }

Fig. 3: Annotated C function with relational annotations

mulation as lemmas and to the link between ACSL and C functions, WP automatically
proves the assertion at line 17 (for property R4) and the postcondition at line 20 of
Figure 2b.

2.3 Soundness of the transformation

Since our transformation is introducing an ACSL axiomatic, care must be taken to
avoid introducing inconsistencies in the specification. More precisely, the axiomatic
specifies the intended behavior of the ACSL counterpart of the C functions under anal-
ysis. The corresponding ACSL functions are then only used in the contracts of those
C functions. In particular, since the wrapper is inlining the body of the functions con-
cerned by the relational property, the lemma of the axiomatic cannot be used to
prove the assert annotation inside the wrapper.

3 Functions with Side Effects

As mentioned above, the initial RPP approach only works for relational properties over
pure functions. More precisely, it allows proving relational properties of the form:

∀ <args1>, . . . , ∀<argsN>,

P ( <args1>, . . . ,<argsN>, \call(f_1,<args1>), . . . , \call(f_N,<argsN>))

for an arbitrary predicate P invoking N ≥ 1 calls of non-recursive functions with-
out side effects. In the context of the C programming language, handling only pure
functions is a major limitation. We thus propose an extension of both the specification
language and the transformation technique in order to let RPP tackle a wider, more
representative, class of C functions.

3.1 New Grammar for Relational Properties

Relational properties are still introduced by a relational clause inside an ACSL
contract. However, since we might now refer to memory locations in either the pre-
or the post-state of any call implied in the relational property, we need to be able to
make explicit references to these states, and not only to the value returned by a given
call. Although more verbose, the new syntax can also be used for pure functions. For
instance, property R1 of Figure 1a can be rewritten as shown in Figure 3.



More generally, we introduce the grammar shown in Figure 4. A relational clause is
composed of three parts. First, we declare a set of universally quantified variables, that
will be used to express the arguments of the calls that are related by the clause. Then,
we specify the set of calls on which we will work in the relational-def part. As shown
in Figure 4a, each call is then associated to an identifier call-id. In the property R1 of
Figure 3, two function calls are explicitly specified in the \callset construct and not
directly in the predicate. Each call has its own identifier (id1 and id2 respectively).
Finally, the relational property itself is given as an ACSL predicate in the relational-
pred part. As described in Figure 4a, in addition to standard ACSL constructs, three
new terms can be used. First, \callpure can be used to indicate the value returned
by a pure function as was done with the \call built-in in the original version of RPP.
This allows specifying relational properties over pure functions without the overhead
required for handling side-effects. As before, nested \callpure are allowed. Second,
\callresult, as used in Figure 3, takes a call-id as parameter and refers to the value
returned by the corresponding call in relational-def. Finally, each such call-id gives rise
to two logic labels. Namely, Pre_call-id refers to the pre-state of the corresponding
call, and Post_call-id to its post-state. These labels can in particular be used in the
ACSL term \at(e,L) that indicates that the term e must be evaluated in the context
of the program state linked to logic label L. Figure 5a below shows an example of their
use.

3.2 Global Variables Accesses

As said before, the new syntax for relational properties enables us to speak about the
value of global variables at various states of the execution, thanks to the newly defined
logic labels bound to each call involved in the \callset of the property. This is for
instance the case in the relational property of Figure 5a, which indicates that h is mono-
tonic with respect to y, in the sense that if a first call to h is done in a state Pre_id1
where the value of y is strictly less than in the pre-state Pre_id2 of a second call, this
will also be the case in the respective post-states Post_id1 and Post_id2.

Generation of the wrapper function is more complicated in presence of side-effects.
As presented in [3], each function call must operate on its own memory state, separated
from the other calls in order for self-composition to work. We thus create as many
duplicates of global variables as needed to let each part of the wrapper use its own set
of copies. However, to avoid useless copies, RPP requires that each function involved in
a relational property has been equipped with a proper set of ACSL assigns clauses,
including \from components. This constraint is similar to what is proposed in [9], and
ensures that only the parts of the global state that are accessed (either for writing or for
reading) by the functions under analysis are subject to duplication. As an example, the
wrapper function corresponding to our h function of Figure 5a is shown in lines 24–33
of Figure 5b.

Finally, the generated axiomatic definition enabling the use of the relational prop-
erty in other POs must also be modified. The original transformation uses a logic func-
tion that is supposed to return the same \result as the C function. However, since
logic functions are always pure, this mechanism is not sufficient to characterize side
effects in the logic world. Instead, we declare a predicate that takes as parameters not



〈call-id〉 ::= id

〈bin-rel〉 ::= == | != | <= | >= | > | <

〈function-parameter〉 ::= 〈relational-call-terms〉+

〈function-name〉 ::= poly-id

〈function-call〉 ::= \call(〈inlining-option〉,
〈function-name〉,
〈function-parameter〉,
〈call-id〉)

〈call-parameter〉 ::= 〈function-call〉+

〈relational-def 〉 ::= \callset(〈call-parameter〉 )

〈relational-pred〉 ::= \true | \false
| 〈relational-terms〉 〈bin-rel〉 〈relational-terms〉
| 〈relational-pred〉 && 〈relational-pred〉
| 〈relational-pred〉 || 〈relational-pred〉
| 〈relational-pred〉 ==> 〈relational-pred〉
| !〈relational-pred〉
| \forall 〈binders〉 ;〈relational-pred〉
| \exists 〈binders〉 ;〈relational-pred〉

〈relational-annot〉 ::= relational 〈relational-clause〉

〈relational-clause〉 ::=
\forall 〈binders〉 ;
〈relational-def 〉 ==> 〈relational-pred〉

(a) Grammar of relational predicates

〈literal〉 ::= \true | \false | int | float

〈relational-label〉 ::= Post_〈call-id〉
| Pre_〈call-id〉

〈bin-op〉 ::= + | - | * | / |

〈result-reference〉 ::= \callresult( 〈call-id〉 )

〈pure-function-parameter〉 ::= 〈relational-call-terms〉+

〈inlining-option〉 ::= int

〈pure-function-name〉 ::= poly-id

〈pure-function-call〉 ::=
\callpure(〈inlining-option〉,
〈pure-function-name〉,〈pure-function-parameter〉)

〈relational-call-terms〉 ::= 〈literal〉
| 〈pure-function-call〉
| 〈relational-call-terms〉 〈bin-op〉 〈relational-call-terms〉

〈relational-terms〉 ::= 〈literal〉
| 〈relational-terms〉 〈bin-op〉 〈relational-terms〉
| 〈result-reference〉
| \ at(〈poly id〉 , 〈relational-label〉 )
| 〈pure-function-call〉

(b) Grammar of relational terms

Fig. 4: Grammar for relational properties

only the returned value and the formal parameters of the C function, but also the relevant
parts of the program states that are involved in the property. As for the wrapper func-
tion, these additional parameters are inferred from the assigns ... \from ...
clauses of the corresponding C functions. For instance, predicate h_acsl, on line 5 of
figure 5b, takes two arguments representing the values of y before and after and execu-
tion of h. This link between the ACSL predicate and the C function is again material-
ized by an ensures clause (lines 17–18). The lemma defining the ACSL predicate is
more complex too, since we have to quantify over the values of all the global variables
at all relevant program states. In the example, this is shown on lines 7–13, where we
have 4 quantified variables representing the value of global variable y before and after
both calls involved in the relational property.

3.3 Support of Pointers

In the previous section, we have shown how to specify relational properties in presence
of side effects over global variables, and how the transformations for both proving and
using a property are performed. However, support of pointer dereference is more com-
plicated. Again, as proven in [3] Self-Composition works if the memory footprint of
each call is separated from the others. Thus, in order to adapt our method, we must en-
sure that pointers that are accessed during two distinct calls point to different memory



1 int y;
2

3 /*@ assigns y \from y;
4 relational R1:
5 \callset(\call(h,id1),
6 \call(h,id2))
7 ==>
8 \at(y,Pre_id1) < \at(y,Pre_id2)
9 ==>

10 \at(y,Post_id1) < \at(y,Post_id2);
11 */
12 void h(){
13 int a = 10;
14 y = y + a;
15 return;
16 }

(a) Annotated C function with relational

annotations

1 int y;
2

3 /*@ axiomatic Relational_axiom_1 {
4 predicate
5 h_acsl(int y_pre, int y_post);
6

7 lemma Relational_lemma_1:
8 \forall int y_id2_pre, y_id2_post,
9 y_id1_pre, y_id1_post;

10 h_acsl(y_id2_pre, y_id2_post)
11 ==> h_acsl(y_id1_pre, y_id1_post)
12 ==> y_id1_pre < y_id2_pre
13 ==> y_id1_post < y_id2_post; }*/
14

15 /*@ assigns y \from y;
16 behavior Relational_behavior_1:
17 ensures h_acsl(\at(y,Pre),
18 \at(y,Post));*/
19 void h(void){ ... }
20

21 int y_id1;
22 int y_id2;
23

24 void relational_wrapper_1(void){
25 int a_1 = 10;
26 y_id1 = y_id1 + a_1;
27 int a_2 = 10;
28 y_id2 += y_id2 + a_2;
29 /*@ assert Rpp:
30 \at(y_id1,Pre) < \at(y_id2,Pre) ==>
31 \at(y_id1,Here) < \at(y_id2,Here);*/
32 return;
33 }

(b) Transformed code for verification and use
of relational properties with side effect

Fig. 5: Relational property on a function with side-effect

locations. As above, such accesses are given by assigns ... \from ... clauses
in the contract of the corresponding C functions. An example of a relational property
on a function k using pointers (monotonicity with respect to the content of a pointer) is
given in Figure 6a, where k is specified to assign *y using only its initial content.

Memory separation is enforced using ACSL’s built-in predicate \separated. For
the wrapper function, we add a requires clause stating the appropriate \separated
locations. This can be seen on Figure 6b, line 20, where we request that the copies of
pointer y used for the inlining of both calls to k points to two separated area in the
memory. Similarly, in the axiomatic part, the lemma adds separation constraints over
the universally quantified pointers (line 9 in the Figure 6b).

We also need to refine the declaration of the predicate in presence of pointer ac-
cesses. First, the predicate now needs to explicitly take as parameters the pre- and post-
states of the C function. In ACSL, this is done by specifying logic labels as special
parameters, surrounded by braces, as shown in line 3 of Figure 6b. Second, a reads
clause allows one to specify the footprint of the predicate, that is, the set of memory
accesses that the validity of the predicate depends on (line 4). Similarly, the lemma on



1 /*@ assigns *y \from *y;
2 relational R1:
3 \callset(
4 \call(k,id1),
5 \call(k,id2))
6 ==>
7 \at(*y,Pre_id1) <
8 \at(*y,Pre_id2)
9 ==>

10 \at(*y,Post_id1) <
11 \at(*y,Post_id2);
12 */
13 void k(int *y){
14 *y = *y + 1;
15 return;
16 }

(a) Original annotated C function

1 /*@ axiomatic Relational_axiom_1 {
2 predicate
3 k_acsl{pre, post}(int *y)
4 reads \at(*y,post), \at(*y,pre);
5

6 lemma Relational_lemma_1
7 {pre_id2, post_id2, pre_id1, post_id1}:
8 \forall int *y_id2, int *y_id1;
9 \separated(y_id1,y_id2)

10 ==> k_acsl{pre_id2, post_id2}(y_id2)
11 ==> k_acsl{pre_id1, post_id1}(y_id1)
12 ==> \at(*y_id1,pre_id1) < \at(*y_id2,pre_id2)
13 ==> \at(*y_id1,post_id1) < \at(*y_id2,post_id2);
14 }*/
15 /*@ assigns *y \from *y;
16 behavior Relational_behavior_1:
17 ensures k_acsl{Pre, Post}(y);*/
18 void k(int *y){ ... }
19

20 /*@ requires \separated(y_id1, y_id2);*/
21 void relational_wrapper_1(int *y_id1, int *y_id1){
22 *y_id1 = *y_id1 + 1;
23

24 *y_id2 = *y_id2 + 1;
25

26 /*@ assert Rpp:
27 \at(*y_id1,Pre) < \at(*y_id2,Pre) ==>
28 \at(*y_id1,Here) < \at(*y_id2,Here);*/
29 return;
30 }

(b) Code transformation

Fig. 6: Relational property in presence of pointers

lines 6–13 takes 4 logic labels as parameters, since it relates two calls to k, each of them
having a pre- and a post-state.

It should be noted that the memory separation assumption makes the tool verify
relational properties without pointer aliasing. Support of properties with pointer aliasing
is left as future work.

4 Recursive Functions

We have shown in the previous section how we handle functions with side effects. Let
us now focus on another class of functions, namely recursive functions. Support for
recursive functions in RPP is interesting because it is very natural to specify such func-
tions with relational properties. For example, a naive specification of a fact function
computing the factorial of an integer can be written as{

∀x. x ≤ 1 =⇒ fact(x) = 1,

∀x. x > 1 =⇒ fact(x) = fact(x− 1) ∗ (x)

The corresponding relational properties are given in Figure 7a. The proof of the
Induction property requires a modification to the generation of the wrapper func-
tion, that can be observed in Figure 7b. Indeed, we do not want to inline the second call



1 /*@ assigns \result \from x;
2 relational Base:
3 \forall int x1;
4 x1 <= 1 ==>
5 \callpure(1,fact,x1) == 1;
6 relational Induction:
7 \forall int x1;
8 x1 > 1 ==>
9 \callpure(1,fact,x1) ==

10 \callpure(0,fact,x1-1)*x1;
11 */
12 int fact(int x) {
13 if(x <= 1){
14 return 1;
15 }
16 else{
17 return fact(x-1)*x;
18 }
19 }

(a) Annotated recursive C function with
relational clauses

1 void relational_wrapper_2(int x1){
2 int return_var_rela_2;
3 int return_var_rela_3;
4 {
5 if (x1 <= 1) {
6 return_var_rela_2 = 1;
7 }
8 else {
9 return_var_rela_2 = fact(x1-1)*x1;

10 }
11 }
12 return_var_rela_3 = fact(x1-1);
13 /*@ assert Rpp:
14 x1 > 1 ==>
15 return_var_rela_2 ==
16 return_var_rela_3*x1;
17 */
18 return;
19 }

(b) Code transformation for the proof of the
second relational property

Fig. 7: Relational property on recursive C function without side effects

to fact on line 12, in order to take advantage of the fact that, since fact is a pure
function that does not read anything from the global environment, this call returns the
same value as the one of line 9, obtained by inlining the call to fact(x1). This is
why, as was indicated on Figure 4, there is an optional argument to the \callpure
construct, that indicates the maximal depth that the inlining can reach in the wrapper.
The default value of 1, which is also used explicitly in our example for the first call, on
line 9 of Figure 7a, means that we inline the body of the function once (i.e. if the func-
tion calls other functions, including itself, these calls themselves will not be inlined).
When this parameter is set to 0, as is the case for the second call in our example (line
10), we keep the call as such in the wrapper.

Support for recursive functions is not limited to pure functions. Recursive functions
with side effects can also be handled. In particular, as shown in the grammar, each
\call appearing in a \callset can also have an inlining directive. For instance, we
can consider another implementation of the factorial, whose result is this time recorded
in a global variable r (Figure 8). The corresponding relational properties (lines 5–9)
are similar to the pure case. However, the proof is slightly different, since the function
has side effects, we cannot use logic function equality. Instead, we use the relational
property as an induction hypothesis and inline both functions.

Note that in this case, a call to the function itself appears in the wrapper, contrarily
to the situation detailed in section 2.3. However, under the assumption that the function
always terminates, this call is performed on arguments that are strictly smaller than
the ones of the wrapper itself. Hence, the axiomatic can be used as an induction
hypothesis in the sense that the wrapper allows us to prove that if the relational property
holds for arguments smaller than x, then it holds for x.



1 int r;
2

3 /*@ requires x >= 0;
4 assigns r \from r,x;
5 relational \forall int x1;
6 \callset(\call(1,fact,x1,id1)) ==> x1 <= 1 ==> \at(r,Post_id1) == 1;
7 relational \forall int x1;
8 \callset(\call(1,fact,x1,id2), \call(1,fact,x1-1,id3))
9 ==> x1 > 1 ==> \at(r,Post_id2) == \at(r,Post_id3)*x1;

10 */
11 void fact(int x) {
12 if(x <= 1){
13 r = 1;
14 return;
15 }
16 else{
17 fact(x-1);
18 r = r * x;
19 return;
20 }
21 }

Fig. 8: Relational property on recursive C function with side effects

5 llustrative Examples

We have seen how to express relational properties over a large class of C functions and
how RPP can generate C code and plain ACSL specifications for proving and using
these properties through a standard WP process. To check that this approach works in
practice, we have tested our tool on different benchmarks. These tests aim at confirming:

– the ability to specify various relational properties over a large class of functions;
– the capacity to prove and use such properties using the generated transformation;
– the support of a large range of function implementations;
– the ability to use other techniques (runtime checks, test generation for invalidating

the property) when WP fails to discharge a corresponding PO.

The first subsection will present our own benchmark composed of a mix of different
types of relational properties. This benchmark is mainly designed to validate the two
first items. The second subsection will show how RPP has performed on the benchmark
proposed in [19]. This will confirm the second and third points. Finally, we will present
in Section 6 our use of the E-ACSL and STADY plugins assessing the last point.

5.1 Internal Examples

As stated previously, we have tested RPP on a set of relational properties extracted
from real case studies. This includes in particular encryption, as presented in Section 2,
monotonicity (Section 3) or the factorial of Section 4, but also properties found in
map/reduce, as the one in row 6 in Figure9, stating that the choice of the partition-
ing for the initial set of data should not play a role in the final result. The benchmark is
also composed of more academic examples like linear algebraic properties of matrices,



Num Relational Property Specified /
Generated Verified Used Side

effect Loop Recursive

1 ∀x1, x2 ∈ Z :
x1 < x2⇒ f(x1) < f(x2) 3 3 3 3 7 7

2 ∀ x;
f(x + 1) = f(x) ∗ (x + 1) 3 3 3 3 7 3

3 ∀x, f1(x) ≤ f2(x) ≤ f3(x) 3 3 7 7 7 7

4 ∀x, f(f(x)) = f(x) 3 3 7 7 3 7

5 ∀Msg,Key;
Decrypt(Encrypt(Msg,Key), Key) = Msg 3 3 3 3 3 7

6
∀ t, subt1, ..., subtn;

t = subt1 ∪ ... ∪ subtn ⇒
max(t) = max(max(subt1), ...,max(subtn))

3 3 7 3 3 7

7 ∀A,B;
(A + B)T = (AT + BT )

3 3 7 7 3 7

8 det(A) = det(Aᵀ) 3 3 7 7 3 7

9 ∀x1, x2, y, f(x1 + x2, y) = f(x1, y) + f(x2, y) 3 3 3 7 7 3

10 ∀a, b, c, Med(a, b, c) = Med(a, c, b) 3 3 7 7 7 7

Fig. 9: Summary of relational properties considered by RPP

over functions containing loops (rows 7 and 8), or the property of row 10, that states the
symmetry of the median of three numbers.

Figure 9 summarizes the results obtained on the benchmark. The first three columns
indicate respectively whether the corresponding property could be specified and the cor-
responding code transformation generated, proved and used as an hypothesis in other
proofs. The last three columns show what kind of C constructs are used in the im-
plementation of the functions under analysis, namely side effects, presence of loops
(which are always difficult for WP-related verification techniques, due to the need for
loop invariants), and presence of recursive functions.

5.2 Comparator Functions

We also evaluated RPP on the benchmark proposed in [19]. It is composed of a col-
lection of flawed and corrected implementations of comparators over a variety of data
types written in Java, inspired from a collection of Stackoverflow 6 questions. Translat-
ing the Java code into C was straightforward and fully preserved the semantics of the
functions. We focused on the same properties as [19], that is anti-symmetry (P1), tran-
sitivity (P2) and extensionality (P3). Mathematically, these properties can be expressed
as such:

6 https://stackoverflow.com

https://stackoverflow.com


P1 : ∀ s1, s2. compare(s1, s2) = −compare(s2, s1)

P2 : ∀ s1, s2, s3. compare(s1, s2) > 0 ∧ compare(s2, s3) > 0

⇒ compare(s1, s3) > 0

P3 : ∀ s1, s2, s3. compare(s1, s2) = 0⇒ (compare(s1, s3) = compare(s2, s3))

Results are depicted in Table 10. For each comparator, we indicate whether the
properties P1, P2 and P3 hold according to RPP (3 and 7 show whether the property
was proved valid by WP). We get similar results as [19], with the exception of Poker-
Hand, for which the generated wrapper function seems currently out of reach for WP
(limits of scalability due to the combinatorial explosion of self-composition). However,
by rewriting the function in a more modular way, WP was able to handle the example.

6 Dynamic Verification

6.1 Counterexample Generation

For the properties that do not hold in the comparator benchmark, we have been able
to find counterexamples thanks to the proposed encoding of a relational property by
self-composed code and using another FRAMA-C plugin, STADY [17]. STADY7 is a
testing-based counterexample generator. In particular, STADY tries to find an input
vector that will falsify an ACSL annotation for which WP could not decide whether
it holds, thereby showing that the code is not conforming to the specification.

We apply STADY to try to find a test input such that the assert clause at the
end of the wrapper function is false. The results are shown in the STADY columns
of Figure 10. Obviously, STADY does not try to find counterexamples for properties
that are proved valid by WP. For properties that are not proved valid, 3 indicates that a
counterexample is found (within a timeout of 30 seconds), while $ indicated the only
case where a counterexample is not generated before a 30-second timeout. A longer
timeout (60 minutes) did not improve the situation in that case. Symbol 0 denotes
two cases where the code translation uses features that are currently not yet supported
by STADY. As shown in the table, thanks to the RPP translation, STADY was able to
find counterexamples for almost all unproven properties. Notice that some examples
required minor modifications so that STADY can be used. To be able to use testing, we
had of course to add bodies for unimplemented functions. Other modifications consisted
in reducing the input space to a representative smaller domain (by limiting the size of
an input array) for some examples to facilitate counterexample generation [17].

6.2 Runtime Assertion Checking

The code transformation technique of RPP also enables runtime verification of rela-
tional properties through the E-ACSL plugin [10,20]. More precisely, the E-ACSL

7 See https://github.com/gpetiot/Frama-C-StaDy

https://github.com/gpetiot/Frama-C-StaDy


Proof (WP) Counterex. gen. (STADY)
Benchmark P1 P2 P3 P1 P2 P3
ArrayInt-false.c 3 3 7 – – 3

ArrayInt-true.c 3 3 3 – – –
CatBPos-false.c 7 7 7 3 3 3

Chromosome-false.c 3 7 7 – $ 3

Chromosome-true.c 3 3 3 – – –
ColItem-false.c 7 7 7 3 3 3

ColItem-true.c 3 3 3 – – –
Contact-false.c 3 7 7 – 3 3

Container-false-v1.c 7 3 3 3 – –
Container-false-v2.c 7 7 7 3 3 3

Container-true.c 3 3 3 – – –
DataPoint-false.c 7 7 7 3 3 3

FileItem-false.c 3 3 7 – – 3

FileItem-true.c 3 3 3 – – –
IsoSprite-false-v1.c 7 7 7 3 3 3

IsoSprite-false-v2.c 7 7 3 3 3 –
Match-false.c 7 3 7 3 – 3

Match-true.c 3 3 3 – – –
NameComparator-false.c 7 3 3 3 – –
NameComparator-true.c 3 3 3 – – –
Node-false.c 3 3 7 – – 3

Node-true.c 3 3 3 – – –
NzbFile-false.c 7 3 3 3 – –
NzbFile-true.c 3 3 3 – – –
PokerHand-false.c 3 7 7 – 0 0

PokerHand-true.c 3 3 3 – – –
Solution-false.c 3 3 7 – – 3

Solution-true.c 3 3 3 – – –
TextPosition-false.c 3 7 7 – 3 3

TextPosition-true.c 3 3 3 – – –
Time-false.c 7 3 3 3 – –
Time-true.c 3 3 3 – – –
Word-false.c 7 7 3 3 3 –
Word-true.c 3 3 3 – – –

Fig. 10: Comparator properties analysed with WP and STADY after RPP translation

plugin translates ACSL annotations into C code that will check them at runtime and
abort execution if one of the annotations fails. We tested the E-ACSL plugin on the test
inputs generated by STADY in order to check that each generated counterexample does
indeed violate the relational property. As expected, the obtained results validate those
of the previous section. Since counterexample generation with STADY [17] basically
includes a runtime assertion checking step for each test datum considered during the
test generation process, we do not present the results of this step in separate columns.



7 Conclusion and Future Work

We have presented a major extension to an existing verification technique for relational
properties, implemented in the FRAMA-C plugin RPP. The extension adds support for
functions with side effects (access to global variables and pointer dereferences) and
recursive functions. RPP relies on FRAMA-C/WP for automatic or interactive proof
of the relational properties and offers the ability to use them as hypothesis in other
proofs. Moreover, beyond WP, RPP also allows users to take advantage of E-ACSL
and STADY plugins to verify relational properties at runtime and to produce a test input
exhibiting the issue when a function does not respect the specified relational property.
We have also shown that our implementation can handle a wide variety of properties
and code: we consider a large class of relational properties with several, possibly nested,
function calls.

However, there are still some limitations, inherent to our use of sequential self-
composition. First, in the case of relational properties linking functions with large bod-
ies or a large number of functions, the size of the generated wrapper function may ex-
plode, leading to POs that cannot be handled by automated theorem provers or even
generated by weakest precondition calculus. A first solution for this problem is to
use the modularity of the approach to reduce the size of the function and prove sub-
properties. However, it is not always possible to modify an existing implementation.
Alternative methods, based on a generalization of the technique proposed in [9] for ver-
ifying \from clauses, and that do not rely on the generation of a wrapper function seem
thus desirable. The notation of relational properties in the presence of side effects can
be seen somewhat heavy to use. To make this notation more succinct, some shorthands
for most common usages will be useful. The possibility to use runtime verification and
testing is an important benefit in situations where the proof does not conclude. Further-
more, treatment of loops needs to be improved. In particular, it is not possible yet to
specify “relational invariants” that would allow relating the behavior of a loop in two
different contexts, while this is often necessary to complete the proof of a relational
property. Solutions based on program products [2] look promising. Finally, as already
mentioned, we need to extend our technique to handle potential aliases across the exe-
cutions involved in a relational property.
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