
Sequential generation of structured arrays and its

deductive verification

Richard Genestier, Alain Giorgetti, Guillaume Petiot

To cite this version:

Richard Genestier, Alain Giorgetti, Guillaume Petiot. Sequential generation of structured
arrays and its deductive verification. TAP 2015, 9th Int. Conf. of Tests and Proofs, 2015,
L’Aquila, Italy. Springer, 9154, pp.109–128, 2015, LNCS. <hal-01228995>

HAL Id: hal-01228995

https://hal.archives-ouvertes.fr/hal-01228995

Submitted on 16 Nov 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

https://hal.archives-ouvertes.fr
https://hal.archives-ouvertes.fr/hal-01228995


Sequential generation of structured arrays
and its deductive verification

Richard Genestier1, Alain Giorgetti1,2, and Guillaume Petiot1,3

1 FEMTO-ST Institute, University of Franche-Comté, 25030 Besançon CEDEX, France
firstname.lastname@femto-st.fr

2 INRIA Nancy - Grand Est, CASSIS project, 54600 Villers-les-Nancy, France
3 CEA, LIST, Software Reliability Laboratory PC 174, 91191 Gif-sur-Yvette, France

firstname.lastname@cea.fr

Abstract. A structured array is an array satisfying given constraints, such as be-
ing sorted or having no duplicate values. Generation of all arrays with a given
structure up to some given length has many applications, including bounded ex-
haustive testing. A sequential generator of structured arrays can be defined by
two C functions: the first one computes an initial array, and the second one steps
from one array to the next one according to some total order on the set of arrays.
We formally specify with ACSL annotations that the generated arrays satisfy the
prescribed structural constraints (soundness property) and that the generation is
in increasing lexicographic order (progress property). We refine this specification
into two programming and specification patterns: one for generation in lexico-
graphic order and one for generation by filtering the output of another generator.
We distribute a library of generators instantiating these patterns. After adding
suitable loop invariants we automatically prove the soundness and progress prop-
erties with the Frama-C platform.

Keywords: formal specification, deductive verification, combinatorial enumera-
tion, sequential generation, imperative program.

1 Introduction

Automated techniques for software testing are attractive because they produce many test
cases in a more rational, reliable and affordable way than manual ones. We consider here
unit testing for functions inputting a structured array. An array is said to be structured
if it satisfies given constraints, such as being sorted or having no duplicate values. A
challenge in input data generation for unit testing is to design and implement correct
generators of complex data structures.

A recent trend in research in software verification aims at building verification en-
vironments that are themselves certified, in order to avoid erroneously validating safety
properties of critical software. Randomized property-based testing has been formalized
in Coq [15] to certify random generators. M. Carlier, C. Dubois and A. Gotlieb for-
mally certify a constraint solver in Coq [6] as a piece of a certified testing environment.
A certified constraint solver on a finite domain of arrays needs certified sequential gen-
erators of these structures to explore their domain. As a complement to random testing
we address Bounded Exhaustive Testing (BET for short) with algorithms generating all



the arrays with given length and structure. We formally specify the behavior of these
exhaustive array generators. As an alternative to interactive proving, we annotate them
with loop invariants and variants, so that their formal contracts can be proved automat-
ically. The BET approach is relevant [19] because it offers the advantage of providing
counterexamples of minimal size, and errors in the function to be tested can often be
revealed using input arrays of small size.

For a predefined total order on all the arrays of the same length, a sequential gener-
ator of all arrays with a given structure is composed of two functions: the first function
constructs the smallest array of a given length satisfying the structural constraint, and
from any array, the second function constructs the next array in that order satisfying the
constraint. We present a uniform approach to the rational implementation of sequen-
tial generators of structured arrays. They are implemented as C functions and formally
specified in the ANSI C Specification Language (ACSL) [2]. We consider three behav-
ioral properties for the generation functions. The soundness property asserts that both
functions generate arrays satisfying the prescribed constraints. The progress property
asserts that the second function generates arrays in increasing lexicographic order. It
entails the termination of repeated calls to the second function. The exhaustivity prop-
erty asserts that the generator does not omit any solution. According to the deductive
approach promoted by Floyd [11], Hoare [13] and Dijkstra [9], we statically verify the
soundness and progress properties. In addition, we execute the generator up to some
array length to check dynamically the exhaustivity property, either by counting or by
comparison with the output of another generator. For deductive verification, we use the
WP plugin [8] of Frama-C, which implements the Weakest Precondition calculus for
C programs annotated in ACSL, assisted by SMT solvers [21] to prove the verification
conditions generated by WP. Frama-C is a framework for the analysis of C programs
developed by CEA LIST and INRIA Saclay.

We also propose programming and specification patterns to facilitate the design of
the generation functions and the verification of their properties. A first pattern formal-
izes the principle of generation in lexicographic order by modifying the end of the array.
A second pattern describes generation by filtering the output of an existing generator. It
is completed by a pattern outlining how to uniformly transform a first-order constraint
into a Boolean function.

The contributions of this paper are (i) general programming and specification pat-
terns to speed up the construction and verification of sequential generators, (ii) a verified
library of C programs and ACSL specifications implementing sequential generation al-
gorithms, and (iii) automated formal proofs of their soundness and progress properties.

After giving some definitions, Section 2 presents generation in lexicographic order
through a running example and a general pattern. Section 3 illustrates generation by
filtering with the same example and proposes patterns that make this method easy to
apply to obtain and verify many sequential generators. Verification results for several
generators constructed from these patterns are presented in Section 4. Section 5 presents
some related work, and Section 6 concludes.



2 Generation in lexicographic order

In all that follows, array values are mathematical integers. Bounded exhaustive genera-
tion of arrays only makes sense when there are finitely many arrays of each length. To
this end array values are assumed to be lower- and upper-bounded by two C integers,
whose absolute value is usually small, so that the number of arrays to generate does
not become too large. Moreover it can often be assumed that all the computations for
new array values are performed within these bounds. Under these assumptions, array
values can be safely represented by C integers with the type int, without any risk of
arithmetic overflows.

Let < denote the strict total order on integers, such that i < i+ 1 for any integer i.

Definition 1. The lexicographic order on integer arrays, denoted by ≺, is such that
b ≺ c if and only if there is an index i (0 ≤ i ≤ n − 1) such that b[i] < c[i] and
b[j] = c[j] for 0 ≤ j ≤ i− 1, for all integer arrays b and c of length n ≥ 0.

The binary relation ≺ is a strict total order. All the programs presented in the paper
generate structured arrays in increasing lexicographic order.

Section 2.1 defines sequential generation functions. Sections 2.2 and 2.4 respec-
tively present the principle of generation in lexicographic order through the example of
a family of structured arrays and through a formal pattern, while Section 2.3 presents a
formalization of the progress property.

2.1 Sequential generation functions

Consider a family z of structured C arrays of length n whose values are of type int.
A sequential generator of arrays in this family consists of two C functions, called the
(sequential) generation functions. The first function

int first_z(int a[], int n, ...)

generates the first array a of length n in the family z. It returns 1 if there is at least one
array of this length in this family. Otherwise, it returns 0. The second function

int next_z(int a[], int n, ...)

returns 1 and generates in the array a of length n the next element of the family z
immediately following the one stored in the array a when the function is called, if this
array is not the last one in the family. Otherwise, it returns 0. The function next_z
is thereafter called the successor function. In the header of these two C functions, the
dots represent other parameters which may be required for the generation of the struc-
tured array. We only consider the cases where none of these parameters is an additional
structure.

A typical program successively generating in the unique variable a all the arrays of
length n in the family z consists of a call first_z(a,n,...); to the first function,
a treatment of the first array, and then a treatment of all the subsequent arrays in the
body of a loop while (next_z(a,n,...) == 1).



2.2 Running example

Catalogs such as the fxtbook [1] propose effective sequential generators of combinato-
rial structures stored in a structured array. We consider the combinatorial structure of
restricted growth function as a running example.

Definition 2. A Restricted Growth Function (RGF, for short) of size n is an endofunc-
tion a of {0, . . . , n−1} such that a(0) = 0 and a(k) ≤ a(k−1)+1 for 1 ≤ k ≤ n−1.

An endofunction a of {0, . . . , n−1}, and thus an RGF, can be represented by the C array
a(0) a(1) . . . a(n− 1) of its n integer values. The fxtbook proposes an algorithm [1,
page 235] to compute the RGF immediately following a given RGF a in ascending
lexicographic order:

1. Find the maximum integer j such that a(j) ≤ a(j − 1).
2. If this integer exists, increment the value a(j) and fix a(i) = 0 for all i > j. The

other values of a remain unchanged.
3. Otherwise, the generation is complete, a is the largest RGF and remains unchanged.

For example, the five RGFs of size 3 generated by this algorithm are 000, 001, 010, 011
and 012. The first RGF is the constant function equal to 0.

1 #include "global.h"
2 /*@ predicate is_non_neg(int *a, Z n) = ∀ Z i; 0 ≤ i < n⇒ a[i] ≥ 0;
3 @ predicate is_le_pred(int *a, Z n) = ∀ Z i; 1 ≤ i < n⇒ a[i] ≤ a[i-1]+1;
4 @ predicate is_rgf(int *a, Z n) = a[0] == 0 ∧ is_non_neg(a,n)
5 @ ∧ is_le_pred(a,n); */
6

7 /*@ requires n > 0 ∧ \valid(a+(0..n-1));
8 @ assigns a[0..n-1];
9 @ ensures is_rgf(a,n); */

10 void first_rgf(int a[], int n);
11

12 /*@ requires n > 0 ∧ \valid(a+(0..n-1));
13 @ requires is_rgf(a,n);
14 @ assigns a[1..n-1];
15 @ ensures is_rgf(a,n);
16 @ ensures \result == 1⇒ lt_lex{Pre,Post}(a,n); */
17 int next_rgf(int a[], int n);

Fig. 1. ACSL predicates and contracts of RGF generation functions (file rgf.h).

Figures 1 and 2 respectively show an ACSL specification and a C code for the se-
quential generation functions first_rgf and next_rgf. We explain through these
examples the features of ACSL we use. To facilitate the reading of the specifications,
some ACSL notations are replaced by mathematical symbols (e.g. keywords \forall
and integer are respectively denoted by ∀ and Z).

The file rgf.h given in Figure 1 and included in Figure 2 is composed of three
predicates and two function contracts. The characteristic property of RGFs from Defi-
nition 2 is expressed between line 2 and line 5 of Figure 1 by the three ACSL predicates
is_rgf, is_non_neg and is_le_pred. The constraint that the array values are
in {0, . . . , n − 1} is not specified because it is a consequence of the other constraints.
In both function contracts an annotation requires R; specifies that the precondition
R must be satisfied by the parameters of the function when it is called. On lines 7 and
12, we require that array a is of positive length n and is allocated in memory. It is also



required (line 13) that the input array a of the successor function represents an RGF.
An annotation of the form assigns A; before the header of a function declares in A
the function parameters and global variables that it can modify. Thus, line 14 declares
that all the values of array a can be changed except the first one a[0].

An annotation ensures E; asserts that the postcondition E holds at the end of the
function execution. The soundness property asserts that all the generated arrays satisfy
the prescribed constraint, for the corresponding function to be an RGF. It is formally
specified on lines 9 and 15 of Figure 1. The postcondition on line 16 is explained in
Section 2.3.

1 #include "rgf.h"
2

3 /*@ predicate is_zero(int *a, Z b) = ∀ Z i; 0 ≤ i < b⇒ a[i] == 0; */
4

5 void first_rgf(int a[], int n) {
6 int k;
7 /*@ loop invariant 0 ≤ k ≤ n;
8 @ loop invariant is_zero(a,k);
9 @ loop assigns k, a[0..n-1];

10 @ loop variant n-k; */
11 for (k = 0; k < n; k++) a[k] = 0;
12 }
13

14 int next_rgf(int a[], int n) {
15 int rev,k;
16 /*@ loop invariant 0 ≤ rev ≤ n-1;
17 @ loop invariant (∀ Z j; rev < j < n⇒ a[j] > a[j-1]);
18 @ loop assigns rev;
19 @ loop variant rev; */
20 for (rev = n-1; rev ≥ 1; rev--) if (a[rev] ≤ a[rev-1]) break;
21 if (rev == 0) return 0;
22 a[rev]++;
23 /*@ loop invariant rev+1 ≤ k ≤ n;
24 @ loop invariant is_non_neg(a,k);
25 @ loop invariant is_le_pred(a,k);
26 @ loop assigns k, a[rev+1..n-1];
27 @ loop variant n-k; */
28 for (k = rev+1; k < n; k++) a[k] = 0;
29 return 1;
30 }

Fig. 2. Effective generation of RGFs in C/ACSL.

The file rgf.c shown in Figure 2 is composed of one predicate and two function
definitions specified in ACSL. The predicate is_zero defined on line 3 is introduced
to express the loop invariant of the function first_rgf (line 8 of Figure 2). We now
explain the C statements in the body of the function next_rgf in Figure 2. On line 20,
a loop traverses the array from right to left to find a position from which the end of the
array will be modified. This position is called the revision index of the array a. In this
example, the revision index rev is reached when meeting the rightmost element (i.e.
maximum index) less than or equal to its predecessor. If the search fails, then the final
structure is reached (line 21). Otherwise, the contents of the array are changed from the
revision index to the end, so that the new array also satisfies the constraint and is greater
than the current array in lexicographic order. The way to effect this revision depends on
the prescribed constraints of the array. For RGFs, the property a[rev] ≤ a[rev-1]
of the revision index rev makes it possible to increment a[rev] (line 22) and fill the
rest of the array with 0 (line 28) to obtain the next array satisfying the restricted growth



constraint. Figure 2 also shows annotations concerning the loops of the functions. An
annotation loop invariant I; immediately before a loop states that the formula
I is an (inductive) invariant of this loop, i.e., a property that holds the first time the loop
is entered and is preserved by each iteration of the loop body. For instance, the loop
invariant on line 17 asserts that the revision index is the rightmost position from which
the end of the array can be modified to obtain a greater array satisfying the constraint.
Before the second loop of the function next_rgf, three loop invariants successively
assert that the loop variable k stays between rev+1 and n (line 23), that the k first
values of the array are non-negative (line 24), and that the property is_le_pred is
satisfied up to k (line 25). The annotation loop assigns line 26 asserts that the only
values that the loop body can change are the elements of a between the indexes rev+1
and n-1. An annotation loop variant V; defines a loop variant V to ensure the
termination of the loop. The entire expression must be non-negative at the beginning
of each loop iteration and strictly decrease between two successive loop iterations. For
example, as declared on line 27, the term n-k is a variant of the loop on line 28. The
ACSL annotations in the body of the function first_rgf are similar and therefore
not detailed.

Suppose that Figure 2 is the content of a file rgf.c. The static deductive verifica-
tion of the function next_rgf with Frama-C and its plugin WP is realized by running
the command frama-c -wp-fct next_rgf rgf.c. Frama-C indicates whether
each proof obligation generated by WP is proved by the SMT solver Alt-Ergo and indi-
cates the duration of each proof. Verification results are detailed in Section 4.

2.3 Progress property

The progress property asserts that the successor function generates arrays in increasing
lexicographic order. It is specified in ACSL by the postcondition

ensures \result == 1 ⇒ lt_lex{Pre,Post}(a,n);

on line 16 in Figure 1. The ACSL formula lt_lex{L1,L2}(a,n) formalizes that
the array a at label L1 is lexicographically less than at label L2. A label represents
a position in the program. Every expression e in ACSL can be written \at(e,L),
meaning that e is evaluated at the label L. The predefined label Pre (resp. Post)
in the postcondition refers to the state before (resp. after) execution of the function
next_rgf.

The predicate lt_lex and two auxiliary predicates formalize Definition 1 in a
header file global.h included in all the generators. These definitions are shown in
Figure 3.

1 /*@ predicate is_eq{L1,L2}(int *a, Z i) =
2 @ ∀ Z j; 0 ≤ j < i⇒ \at(a[j],L1) == \at(a[j],L2);
3 @ predicate lt_lex_at{L1,L2}(int *a, Z i) =
4 @ is_eq{L1,L2}(a,i) ∧ \at(a[i],L1) < \at(a[i],L2);
5 @ predicate lt_lex{L1,L2}(int *a, int n) =
6 @ ∃ int i; 0 ≤ i < n ∧ lt_lex_at{L1,L2}(a,i); */

Fig. 3. Progress predicates (file global.h).



2.4 Pattern of generation in lexicographic order

The function next_rgf and the successor function of many other effective sequential
generators of structured arrays follow a design principle here called “suffix revision”.
Figure 4 presents this principle as a design pattern composed of C code and ACSL an-
notations, for the successor function next_z of a sequential generator in lexicographic
order.

The family z of structured arrays is defined by a constraint formalized by the pred-
icate is_z declared on line 4 of Figure 4. The successor function next_z revises the
suffix of its input array a in two steps. First, it finds the rightmost array index satisfying
some predicate called the revision condition. This index is called the revision index of
the array a. Second, it modifies the contents of the array a from the revision index to
the array end. The revision condition is formalized by the predicate is_rev (line 5)
and the Boolean function b_rev (declared and specified on lines 8-13). The loop on
line 32 explores the input array a from right to left to find the revision index rev. The
loop invariant on line 29 states that the revision index is the rightmost index satisfying
the revision condition. If the search fails (line 33), the input array is the last one and the
function returns 0. Otherwise, the function suffix revises the array a from its revi-
sion index to its end, as specified by the assigns clause on line 17. Its postcondition
on line 18 asserts that it increases the array value a[rev] at the revision index.

1 #include "global.h"
2

3 /*@ axiomatic preds {
4 @ predicate is_z(int *a, Z n) reads a[0..n-1];
5 @ predicate is_rev(int *a, Z n, Z i) reads a[0..n-1];
6 @ } */
7

8 /*@ requires n > 0 ∧ \valid(a+(0..n-1));
9 @ requires 0 ≤ rev ≤ n-1;

10 @ assigns \nothing;
11 @ ensures \result == 0 ∨ \result == 1;
12 @ ensures \result⇔ is_rev(a,n,rev); */
13 int b_rev(int a[], int n, int rev);
14

15 /*@ requires n > 0 ∧ \valid(a+(0..n-1));
16 @ requires 0 ≤ rev ≤ n-1;
17 @ assigns a[rev..n-1];
18 @ ensures a[rev] > \at(a[rev],Pre); */
19 void suffix(int a[], int n, int rev);
20

21 /*@ requires n > 0 ∧ \valid(a+(0..n-1));
22 @ requires is_z(a,n);
23 @ assigns a[0..n-1];
24 @ ensures soundness: is_z(a,n);
25 @ ensures \result == 1⇒ lt_lex{Pre,Post}(a,n); */
26 int next_z(int a[], int n) {
27 int rev;
28 /*@ loop invariant -1 ≤ rev ≤ n-1;
29 @ loop invariant (∀ Z j; rev < j < n⇒ ! is_rev(a,n,j));
30 @ loop assigns rev;
31 @ loop variant rev; */
32 for (rev = n-1; rev ≥ 0; rev--) if (b_rev(a,n,rev)) break;
33 if (rev == -1) return 0;
34 suffix(a,n,rev);
35 return 1;
36 }

Fig. 4. Successor function pattern for suffix revision.



The successor function follows the suffix revision pattern if it satisfies the soundness
and progress properties (respectively specified on line 24 and 25), but also the property
that the successor function always computes the next array, i.e. that there exists no array
in the family z between its input and output arrays, for the strict and total lexicographic
order. An ingredient for its specification is the loop invariant on line 29. Its verification
is further discussed in Section 4.1.

Suppose that Figure 4 is the content of a file suffix.c. The postcondition ex-
pressing the progress property and the loop invariant on line 29 are automatically proved
by WP, with the command

frama-c -wp suffix.c -wp-prop=-soundness.
Note that the loop invariant on line 29 is not required to prove progress property. Indeed,
the algorithm implemented by the function next_z corresponds to the definition of the
lexicographic order: it leaves a prefix of the array a unchanged and increases its value
at the revision index. The progress property is thus generically verified, because it is
a consequence of the pattern. On the other hand, the soundness property cannot be
verified at this level of generality, because it depends on the constraint on the array a.

By instantiating the predicates is_z and is_rev and the subfunctions b_rev
and suffix in this pattern with appropriate code, we obtain a generator of a family
z of structured arrays in lexicographic order, whose progress property can be verified
automatically, assuming that the subfunctions satisfy their contracts. In an instantiation
of the pattern the subfunction contracts have to be completed so that the soundness
property can also be verified automatically. For simple generators it is easier to replace
the subfunction calls by a sequence of statements. For example, we can obtain the suc-
cessor function next_rgf of Figure 2 by replacing the calls b_rev(a,n,rev) and
suffix(a,n,rev); respectively by the statement

a[rev] ≤ a[rev-1];

and the sequence of statements

a[rev]++;
for (k = rev+1; k < n; k++) a[k] = 0;

3 Generation by filtering

Generation by filtering consists of selecting in a family of structures those that satisfy
a given constraint. Of course, the more structures are rejected, the less effective is the
generator. However this simple generation approach quickly provides a first generator,
whose implementation, specification and deductive verification come almost for free,
as we will see throughout this section.

Section 3.1 illustrates the principle of generation by filtering with the example of
RGFs. Section 3.2 formalizes this principle in a general pattern for all generators by
filtering. The soundness property of the generation functions in this pattern is auto-
matically proved. To instantiate this pattern, it is necessary to implement the constraint
of substructures as a Boolean function. Section 3.3 provides a general pattern for this
Boolean function and its specification. The soundness of the Boolean function with
respect to the constraint is also automatically proved.



3.1 Example

The RGF family is a subfamily of the family of endofunctions of {0, ..., n − 1}. Sup-
pose we already have implemented, specified and automatically verified a generator of
endofunctions of {0, ..., n− 1} consisting of two generation functions first_endo-
fct(a,n) and next_endofct(a,n). Figure 5 shows a sequential generator of
RGFs filtering those endofunctions of {0, ..., n − 1} that are RGFs. The generation
functions first_rgf(a,n) and next_rgf(a,n) call the C Boolean function
b_rgf, which characterizes an RGF among the endofunctions of {0, ..., n − 1}. The
ACSL predicate is_rgf here is the conjunction of the predicates is_le_pred and
is_endofct. The contracts of functions first_rgf and next_rgf are not shown,
because they are very similar to those of Figure 1, except the postcondition expressing
the soundness property for next_rgf which is now

ensures \result == 1 ⇒ is_rgf(a,n);

1 /*@ requires n > 0;
2 @ requires \valid(a+(0..n-1));
3 @ requires is_endofct(a,n);
4 @ assigns \nothing;
5 @ ensures \result == 0
6 @ ∨ \result == 1;
7 @ ensures \result == 1⇔ is_rgf(a,n);
8 @*/
9 int b_rgf(int a[], int n) {

10 int i;
11 if (a[0] 6= 0) return 0;
12 /*@ loop invariant 1 ≤ i ≤ n;
13 @ loop invariant is_le_pred(a,i);
14 @ loop assigns i;
15 @ loop variant n-i; */
16 for (i = 1; i < n; i++)
17 if (a[i] > a[i-1]+1) return 0;
18 return 1;
19 }
20

21 int first_rgf(int a[], int n) {
22 int tmp;
23 tmp = first_endofct(a,n);
24 /*@ loop invariant

25 @ tmp 6= 0⇒ is_endofct(a,n);
26 @ loop assigns a[0..n-1],tmp; */
27 while (tmp 6= 0 ∧ b_rgf(a,n) == 0) {
28 tmp = next_endofct(a,n);
29 }
30 if (tmp == 0) { return 0; }
31 return 1;
32 }
33

34 int next_rgf(int a[], int n) {
35 int tmp = 0;
36 /*@ loop assigns a[0..n-1], tmp;
37 @ loop invariant is_endofct(a,n);
38 @ loop invariant
39 @ le_lex{Pre,Here}(a,n); */
40 do {
41 tmp = next_endofct(a,n);
42 } while (tmp 6= 0 ∧ b_rgf(a,n) == 0);
43 if (tmp == 0) { return 0; }
44 return 1;
45 }

Fig. 5. Generation of RGFs by filtering.

1 /*@ predicate le_lex{L1,L2}(int *a, int n) = lt_lex{L1,L2}(a,n)
2 @ ∨ is_eq{L1,L2}(a,n); */
3

4 /*@ lemma trans_le_lt_lex{L1,L2,L3}: ∀ int *a; ∀ int n;
5 @ (le_lex{L1,L2}(a,n) ∧ lt_lex{L2,L3}(a,n))⇒ lt_lex{L1,L3}(a,n); */

Fig. 6. Predicate and lemma to specify and prove progress of a filtering successor function.

The predicate and the lemma defined in Figure 6 are respectively introduced to spec-
ify on lines 38-39 a loop invariant for the filtering loop of the successor function and to
automatically prove that invariant and thus the progress property for that function, as-
suming that the successor function of endofunctions ensures the progress property. The
current array is indeed equal to the previous one at the beginning of the do .. while
loop (lines 40-42). The pseudo-transitivity lemma trans_le_lt_lex helps the pro-
ver to derive the progress property – expressed with the strict order predicate lt_lex
– from that loop invariant and the contract of the called function next_endofct.



3.2 General pattern of generation by filtering

The generation of RGFs by filtering can be generalized to any family of arrays defined
from more general arrays by additional constraints. Figure 7 provides a general pattern
for the generation of arrays in a family z by filtering arrays in a family x that satisfy the
additional constraint is_y implemented by the Boolean function b_y. The arrays in
the family x are assumed to satisfy the constraint is_x. The contracts of the generation
functions first_x, next_x, first_z and next_z are similar to the one of the
functions first_rgf and next_rgf in Section 3.1 and are therefore not reproduced
in Figure 7. In this pattern, the ACSL predicates is_x, is_y and is_z are not defined.
That’s why they are declared in an ACSL axiomatic block, on lines 1-8 of Figure 7.

1 /*@ axiomatic preds {
2 @ predicate is_x(int *a, Z n)
3 @ reads a[0..n-1];
4 @ predicate is_y(int *a, Z n)
5 @ reads a[0..n-1];
6 @ predicate is_z(int *a, Z n) =
7 @ is_x(a,n) ∧ is_y(a,n);
8 @ } */
9

10 int first_x(int a[], int n);
11 int next_x(int a[], int n);
12

13 /*@ requires n > 0;
14 @ requires \valid(a+(0..n-1));
15 @ assigns \nothing;
16 @ ensures \result == 0
17 @ ∨ \result == 1;
18 @ ensures \result == 1
19 @ ⇔ is_y(a,n); */
20 int b_y(int a[], int n);
21

22 int first_z(int a[], int n) {
23 int tmp;
24 tmp = first_x(a,n);

25 /*@ loop invariant tmp 6= 0
26 @ ⇒ is_x(a,n);
27 @ loop assigns a[0..n-1], tmp; */
28 while (tmp 6= 0 ∧ b_y(a,n) == 0) {
29 tmp = next_x(a,n);
30 }
31 if (tmp == 0) { return 0; }
32 return 1;
33 }
34

35 int next_z(int a[], int n) {
36 int tmp;
37 /*@ loop invariant is_x(a,n);
38 @ loop assigns a[0..n-1], tmp;
39 @ loop invariant
40 @ le_lex{Pre,Here}(a,n); */
41 do {
42 tmp = next_x(a,n);
43 } while (tmp 6= 0 ∧ b_y(a,n) == 0);
44 if (tmp == 0) { return 0; }
45 return 1;
46 }

Fig. 7. Pattern of generation by filtering.

Assuming that the functions b_y, first_x and next_x satisfy their specifica-
tions, the soundness and progress properties of the functions first_z and next_z
are automatically proved by Frama-C and WP assisted by Alt-Ergo.

The generator of RGFs by filtering (Figure 5) is obtained by instantiating the gen-
eral pattern as follows: Replace each x, y and z respectively by endofct, rgf and
rgf, and implement the property is_rgf as a Boolean function. Other examples of
sequential generators using this pattern are given in Section 4. Thus, from a specified
generator for a family of structured arrays, one can rapidly implement, specify and ver-
ify generators of their subfamilies.

3.3 General pattern of Boolean functions

We also propose patterns for the ACSL contract and the C code of a Boolean function
corresponding to an array structural constraint expressed in first-order logic. If the con-
straint is a Boolean combination of atomic predicates, the correspondence is obvious:
Boolean operators (such as conjunction or negation) either exist in C or can be readily



expressed by a combination of C operators. Thus, the interesting cases are formulas
with quantifiers. The case of a unique quantifier is too restrictive. The general case,
where quantifiers are arbitrarily nested and combined with Boolean operators, would
be too heavy to formalize, and the result would be painful to read. We have chosen to
present the case of two nested quantifiers. This is enough to give an idea of what the
general case would be, and this case is useful in itself.

1 /*@ axiomatic preds {
2 @ predicate is_x3(int *a, Z n, Z v1, Z v2) reads a[0..n-1];
3 @ }
4 @ predicate is_x2_gen(int *a, Z n, Z v1, Z v2) =
5 @ ∃ Z i2; 0 ≤ i2 < v2 ∧ is_x3(a,n,v1,i2);
6 @ predicate is_x2(int *a, Z n, Z v1) = is_x2_gen(a,n,v1,n);
7 @ predicate is_x1_gen(int *a, Z n, Z v1) = ∀ Z i1; 0 ≤ i1 < v1⇒ is_x2(a,n,i1);
8 @ predicate is_x1(int *a, Z n) = is_x1_gen(a,n,n); */

Fig. 8. Predicates for a constraint ∀∃.

1 /*@ requires n ≥ 0;
2 @ requires \valid(a+(0..n-1));
3 @ assigns \nothing;
4 @ ensures \result == 0 ∨
5 @ \result == 1;
6 @ ensures \result == 1⇔
7 @ is_x3(a,n,v1,v2); */
8 int b_x3(int a[],int n,int v1,int v2);
9

10 /*@ requires n ≥ 0;
11 @ requires \valid(a+(0..n-1));
12 @ assigns \nothing;
13 @ ensures \result == 0 ∨
14 @ \result == 1;
15 @ ensures \result == 1⇔
16 @ is_x2(a,n,v1); */
17 int b_x2(int a[],int n,int v1) {
18 int i;
19 /*@ loop invariant 0 ≤ i ≤ n;
20 @ loop invariant
21 @ ! is_x2_gen(a,n,v1,i);
22 @ loop assigns i;
23 @ loop variant n-i; */
24 for (i = 0; i < n; i++)

25 if (b_x3(a,n,v1,i) == 1) return 1;
26 return 0;
27 }
28

29 /*@ requires n ≥ 0 ∧ \valid(a+(0..n-1));
30 @ assigns \nothing;
31 @ ensures \result == 0 ∨
32 @ \result == 1;
33 @ ensures \result == 1⇔
34 @ is_x1(a,n); */
35 int b_x1(int a[],int n) {
36 int i;
37 /*@ loop invariant 0 ≤ i ≤ n;
38 @ loop invariant is_x1_gen(a,n,i);
39 @ loop assigns i;
40 @ loop variant n-i; */
41 for (i = 0; i < n; i++)
42 if (b_x2(a,n,i) == 0) return 0;
43 return 1;
44 }

Fig. 9. Pattern of Boolean functions for a con-
straint ∀∃.

Consider a constraint of the form ∀i. 0 ≤ i < n ⇒ (∃j. 0 ≤ j < n ∧ ϕ), where
ϕ is a quantifier-free formula dependent on i and j expressing a constraint on an ar-
ray of length n. In Figure 8 the constraint is decomposed into three ACSL predicates
is_x1(a,n), is_x2(a,n,v1) and is_x3(a,n,v1,v2), respectively corre-
sponding to the complete universal property, to the existential sub-formula and to the
property ϕ it quantifies, for an array a of length n. The additional parameter v1 of the
predicates is_x2 and is_x3 corresponds to the free variable i in the subformulas
(∃j. 0 ≤ j < n ∧ ϕ) and ϕ. Similarly, the additional parameter v2 of the predicate
is_x3 corresponds to the free variable j in ϕ. This quantifier-free formula ϕ being
arbitrary in this pattern, the corresponding predicate is_x3 is not defined, but only
declared in an axiomatic block in lines 1-3 of Figure 8.

In Figure 9 the Boolean function b_x1 implements the ACSL predicate is_x1 in
the sense that it returns 1when its parameters satisfy the predicate, and 0 otherwise. The
Boolean functions b_x2 and b_x3 respectively implement the predicates is_x2 and



is_x3. For k =1,2, the function b_xk implements a loop that sequentially evaluates
the predicate is_x(k+1) for all array elements. The loop invariants are specified using
a generalization of the predicate is_xk, named is_xk_gen, defined in lines 4 and 7
of Figure 8.

Suppose that Figure 9 is the content of a file allex.c. Suppose that the Boolean
function b_x3 satisfies its specification. By the command frama-c -wp allex.c
-wp-skip-fct b_x3 we then automatically prove that the other functions satisfy
their specification.

An immediate application of the previous pattern is the generation of surjections
by filtering endofunctions. Indeed, a surjection f is an endofunction of {0, ..., n − 1}
which satisfies the property ∀i. 0 ≤ i < n⇒ (∃j. 0 ≤ j < n ∧ f(j) = i). A generator
of surjections is easily obtained by merging the pattern of Boolean functions (Figures 9
and 8) with the one of generation by filtering (Figure 7), then by renaming x1, x2, x,
y and z respectively as im, eq_im, endofct, im and surj, defining the predicate
is_x3 as

predicate is_x3(int *a, Z n, Z v1, Z v2) = a[v2] == v1;

and implementing the function b_x3 with the unique statement

return(a[v2] == v1);

From the generator of endofunctions already used for RGFs in Section 3.1, the de-
velopment and deductive verification of this surjection generator are effected in a few
minutes. After this minimal work, we can make various simplifications to the surjection
generator while preserving its deductive verification. For example, we can remove the
parameter n of the predicate is_x3, which is not used in that example.

4 Verified library

The patterns presented in the previous sections have been implemented and instantiated
to produce a library of verified sequential generators of structured arrays.1 In order
to ensure that there are finitely many arrays of each length, all the generators of the
library refine a generator of arrays whose codomain is finite. This generator named fct
generates functions from {0, . . . , n− 1} to {0, . . . , k − 1} in increasing lexicographic
order.

The literature in enumerative combinatorics [1,17] provides many effective algo-
rithms to generate classical combinatorial structures, such as n tuples, permutations or
combinations of k elements from n. Using the patterns in Section 3, we quickly obtain
generators of these structures by filtering among functions. Then we implement, spec-
ify and verify more effective generators from the literature by instantiating the pattern
of suffix revision (Section 2.4). Finally we use the generators obtained by filtering to
validate them, as detailed in Section 4.1.

1 Archives enum.*.tar.gz of the library are available at http://members.
femto-st.fr/richard-genestier/en and http://members.femto-st.fr/
alain-giorgetti/en.



Array family C ACSL goals time (s)

suffix 9 12 25 1.929
filtering 14 33 51 5.524

allex 11 28 40 1.936
exall 12 27 40 1.921
all2 40 28 40 1.759
fct 13 25 42 5.622

subset 13 22 40 4.919
endofct 4 12 17 2.003

rgf ⊂ endofct 25 27 69 4.958
sorted1 ⊂ fct 19 27 67 4.743
sorted2 ⊂ fct 28 48 103 6.464
comb ⊂ fct 21 28 67 4.551

inj ⊂ fct 29 42 91 6.031
surj ⊂ fct 29 40 103 7.729

perm ⊂ fct 30 42 91 7.713
endoinj ⊂ inj 4 11 15 2.562

endosurj ⊂ surj 4 11 15 2.638
perm = endofct ∧ inj 17 21 60 7.211

perm = endofct ∧ surj 28 40 102 9.647
invol ⊂ perm 20 27 66 8.729

derang ⊂ perm 20 27 66 8.611
rgf 13 28 41 8.598

sorted 13 30 44 28.445
comb 18 33 46 Timeout
perm 23 29 50 8.903

Fig. 10. Verification results.

Metrics on the library are collected in Figure 10. The first column gives the name of
the families of structures generated. These names are explained in the remainder of this
section. The number of lines of code (resp. ACSL annotations) is recorded in the second
(resp. third) column. The soundness and progress properties of these programs have
been proved automatically with Frama-C Neon 20140301 and its WP plugin assisted
by Why3 0.82 and the SMT solvers Alt-Ergo 0.95.2, CVC3 2.4.1 and CVC4 1.3. The
fourth column shows the number of proof obligations (goals) generated by WP. The
fifth column gives the time needed for the proof of these goals by the provers Alt-Ergo,
CVC3 and CVC4 in seconds on a PC Intel Core i7-3520M 3.00GHz × 4 under Linux
Ubuntu 14.04.

The first block of lines in Figure 10 concerns the patterns presented in Sections 2.4
and 3.2. The patterns allex, exall and all2 respectively correspond to a first-order con-
straint of the form ∀∃, ∃∀ and ∀∀. Note that only the progress property is proved for the
pattern suffix. The second block concerns the above-mentioned generator fct.

The third block in Figure 10 concerns specializations, defined as follows. When a
family of arrays has other parameters than their length, one may fix the value of some
of these parameters and thus obtain other generators. We say that we have specialized
the family. For example, the specialization of the family of functions from {0, ..., n−1}



to {0, . . . , k − 1} for k = 2 gives Boolean functions encoding the family subset of
subsets of a set of n elements [1, page 203]. Its specialization to the case where k = n
yields the family endofct of endofunctions of {0, . . . , n− 1}.

The fourth block in Figure 10 concerns generation by filtering (Section 3). We de-
note by z ⊂ x a generator of structures z by filtering among more general structures
x. We denote by z = x ∧ y a generator of structures z by filtering among more gen-
eral structures x the ones having the additional property of structures y. For instance,
rgf ⊂ endofct denotes a generator of restricted growth functions filtered among endo-
functions (presented in Section 3.1). From the generator fct we generate by filtering the
following families:

– Sorted arrays of length n whose elements are in {0, . . . , k− 1}, by comparing each
array value to the following one if it exists (sorted1),

– sorted arrays of length n whose elements are in {0, ..., k − 1}, by comparing each
array value to each other, i.e. using the pattern all2 (sorted2),

– combinations of p elements selected from n (comb ⊂ fct),
– injections from {0, ..., n− 1} to {0, ..., k − 1} for n ≤ k (inj ⊂ fct) and
– surjections from {0, ..., n− 1} to {0, ..., k − 1} for n ≥ k (generator surj ⊂ fct).

The combination {e0, . . . , ep−1} with 0 ≤ e0 < . . .< ep−1 ≤ n − 1 is represented by
the function c from {0, . . . , p− 1} to {0, ..., n− 1} such that c(i) = ei.

Combining specialization and filtering, we produce four generators of permutations
on {0, ..., n− 1} (structure perm):

– perm ⊂ surj (resp. perm ⊂ inj) by specialization of surjections (resp. injections)
from {0, ..., n− 1} to {0, ..., k − 1} (for k = n) and

– perm = endofct ∧ inj (resp. perm = endofct ∧ surj) by filtering of injections (resp.
surjections) among endofunctions of {0, ..., n− 1}.

The generator perm = endofct ∧ surj was detailed in Section 3.3. By filtering from
permutations we also obtain involutions on {0, ..., n− 1} (invol ⊂ perm) and derange-
ments (fixed-point free permutations) on {0, ..., n− 1} (derang ⊂ perm).

Family nb. goals time (s)

fct 43 6.858
subset 41 7.277

rgf 42 8.760
sorted 45 8.007
comb 48 29.094
perm 51 9.595

Fig. 11. Verification results for effective algorithms with an additional assertion.

The fifth block in Figure 10 concerns effective generators in lexicographic order
implemented by instantiating the pattern presented in Section 2. The generator rgf gen-
erates restricted growth functions with the algorithm from [1, page 235], as detailed



in Section 2.2. The generator sorted produces sorted arrays from {0, ..., n − 1} to
{0, ..., k − 1} in a more efficient manner than the generators sorted1 and sorted2.
The generator comb produces combinations of p elements among n by the algorithm
from [1, page 178]. The generator perm produces permutations on {0, ..., n − 1} by
an adaptation of the algorithm from [1, page 243]. Column 4 shows that the proofs of
these optimized generators are more complex, and thus take a longer duration, than for
generators by filtering. Except for fct and subset, an extension of the timeout of the WP
plugin to two minutes is required. In particular, the progress property of the generator
comb is difficult to prove. However, an additional assertion

/*@ assert lt_lex_at{Pre,Here}(a,rev); */

at the end of the successor function substantially speeds up the longest proofs, as shown
in Figure 11. Indeed, it specifies that the leftmost difference between the current array
content (at label Here) and the former one (at label Pre) is at the revision index rev.
This assertion helps the prover choosing the index rev to instantiate the existential
quantifier in the predicate lt_lex.

4.1 Other properties

We have also proved the postcondition

ensures \result == 0 ⇒ is_eq{Pre,Post}(a,n);

for the successor functions next_z of the generators by suffix revision. It expresses
the property that the array a is not modified when the function returns 0, i.e. when no
revision index is found, indicating that the lexicographically maximal array is reached.
This property does not hold for a generation by filtering that instantiates the pattern
presented in Section 3.2, when the maximal array in the subfamily z, say m_z, is not
the maximal array in the family x, say m_x. In that case the function next_z considers
all the arrays greater than m_z in the family x until reaching m_x and returns 0 while
the array content has changed.

Exhaustivity. They are several ways to check the exhaustivity property asserting that
all the arrays with a given structure are generated. (i) One can store all the generated
arrays in a global array and then specify and prove that it contains all the arrays satis-
fying the constraint. Exhaustivity was formalized in this way for a generator of all the
solutions to the n-queens problem [10]. The formal proof of exhaustivity with the Why3
verification tool [3] needs interactive steps. We discard this solution because we want to
offer an approach where the verification is completely automated. (ii) Another solution
is to specify that the successor function indeed always computes the next array, i.e. that
there exists no array with the given structure between its input and output arrays, for
the strict and total lexicographic order. This quantification over arrays makes the prop-
erty more difficult to prove automatically than the soundness and progress properties.
(iii) When the soundness and progress properties are already proved, the exhaustivity
property can be validated up to some array length simply by counting the number of
generated arrays and comparing it to the expected number either from a sequence of



the On-Line Encyclopedia of Integer Sequences (OEIS) [20] or from known counting
formulas implemented as C functions. This work follows this third way. We have per-
formed the validation for all the structures of the library, by increasing length up to the
limit of the largest positive representable integer, beyond the number of structures one
may expect to generate in a reasonable time.

We have also performed validations of a generator with another one. In the context
of this work this validation is easy to implement, firstly because we can quickly obtain
a reference generator by filtering and secondly because this generator and the effective
one it is compared to produce arrays in the same lexicographic order whenever the latter
follows the principle of suffix revision. In that case, the storage of generated arrays is
not necessary: it is enough to generate arrays in parallel with each generator and then
test their equality. For this validation, the generators by filtering rgf ⊂ fct, comb ⊂ fct,
sorted ⊂ fct and perm ⊂ fct were used as reference implementations to validate the
optimized generators rgf, comb, sorted and perm.

5 Related work

Several techniques and tools help strengthening the trust in programs manipulating
structured data. Randomized property-based testing (RPBT) consists in random gen-
eration of test data to validate given assertions about programs. RPBT has gained a
lot of popularity since the appearance of QuickCheck for Haskell [7], followed by
Quickcheck for Isabelle [4] and re-implementations for many programming languages,
among which the C language with the tool quickcheck4c [23]. In RPBT a random data
generator can be defined by filtering the output of another one, in a similar way as an
exhaustive generator can be defined by filtering another exhaustive generator in BET.

A more generic approach is type targeted testing [18], wherein types are converted
into queries to SMT solvers whose answers provide counterexamples. A more spe-
cific approach is contract-based testing, using contract languages. For Java programs
the tools TestEra [14] and UDITA [12] automatically generate all non-isomorphic test
cases within a given input size and evaluate soundness criteria, UDITA ensuring that
some complex data structures are supported by the program. In case of violated sound-
ness criteria, they produce concrete Java inputs as counterexamples, but the user has to
write data generation methods and predicates. For C programs specified with ACSL, the
tool StaDy [16] integrates the structural test generator PathCrawler [22] within the static
analysis platform Frama-C. PathCrawler uses concrete execution and symbolic execu-
tion based on constraint solving and allows StaDy to guide the user in her proof work,
showing inconsistencies between the code and the specification by the test coverage
of all feasible paths of code and specification and producing counterexamples. StaDy
helped us find errors in preliminary versions of some of our generators. Our work is
even more specific: we provide a dedicated generator for each structure of interest. Al-
though it requires more work, it is guaranteed to find the smallest counterexamples and
is thus complementary to the other approachs.

Moreover we provide formally verified generators as building blocks for verified
verification tools. To our knowledge, the deductive verification of exhaustive generators
of constrained data structures has never been addressed yet.



6 Conclusion

The generation of arrays with a given structure in increasing length up to a given length
can be very useful for automatically testing programs taking these arrays as inputs. Ef-
fective generation algorithms also provide interesting deductive verification problems.
Therefore, we have undertaken to develop a library of structured array generators, for-
mally specified and automatically verified. In order to reduce the cost of their spec-
ification and deductive verification, we propose general patterns for various families
of generators, whose instantiation more easily yields correct programs. In particular, a
pattern for the basic principle of filtering makes it possible to implement many gener-
ators from a small number of classical ones. The soundness and progress properties of
these generators are automatically verified. We also provide a pattern for more effec-
tive generators, whose progress property is automatically verified. The soundness of the
generators obtained by the instantiation of this pattern is more difficult to verify, but the
Frama-C platform and its plugins provide significant help.

The use of deductive verification in combinatorics is not common. In this area, the
most notable works are [5] and [10]. The first one specifies in ACSL and checks with
Frama-C, a C function computing the conjugate of a partition of integers. The second
work proves formally an enumeration of all the solutions to the n-queens problem.
The formal proof is performed using the Why3 tool and the proof of exhaustivity is
interactive.
Acknowledgments. The authors warmly thank J.-C. Filliâtre, J. Julliand, N. Kosmatov,
C. Marché, T. Walsh and the anonymous referees for their suggestions and advice.

References

1. Arndt, J.: Matters Computational - Ideas, Algorithms, Source Code [The fxtbook] (2010),
http://www.jjj.de

2. Baudin, P., Cuoq, P., Filliâtre, J.C., Marché, C., Monate, B., Moy, Y., Prevosto, V.: ACSL:
ANSI/ISO C Specification Language, http://frama-c.com/acsl.html

3. Bobot, F., Filliâtre, J.C., Marché, C., Melquiond, G., Paskevich, A.: The Why3 platform 0.81
(March 2013), https://hal.inria.fr/hal-00822856

4. Bulwahn, L.: The new Quickcheck for Isabelle. In: Hawblitzel, C., Miller, D. (eds.) CPP
2012. LNCS, vol. 7679, pp. 92–108. Springer, Heidelberg (2012)

5. Butelle, F., Hivert, F., Mayero, M., Toumazet, F.: Formal proof of SCHUR conjugate func-
tion. In: Autexier, S., Calmet, J., Delahaye, D., Ion, P.D.F., Rideau, L., Rioboo, R., Sexton,
A.P. (eds.) AISC 2010. LNCS, vol. 6167, pp. 158–171. Springer, Heidelberg (2010)

6. Carlier, M., Dubois, C., Gotlieb, A.: A certified constraint solver over finite domains. In:
Giannakopoulou, D., Méry, D. (eds.) FM 2012. LNCS, vol. 7436, pp. 116–131. Springer,
Heidelberg (2012)

7. Claessen, K., Hughes, J.: QuickCheck: a lightweight tool for random testing of Haskell pro-
grams. In: Proceedings of the Fifth ACM SIGPLAN International Conference on Functional
Programming. SIGPLAN Not., vol. 35, pp. 268–279. ACM, New York (2000)

8. Correnson, L.: Qed. Computing what remains to be proved. In: Badger, J.M., Rozier, K.Y.
(eds.) NFM 2014. LNCS, vol. 8430, pp. 215–229. Springer, Heidelberg (2014)

9. Dijkstra, E.W.: A Discipline of Programming. In: Series in Automatic Computation, Prentice
Hall, Englewood Cliffs (1976)



10. Filliâtre, J.C.: Verifying two lines of C with Why3: An exercise in program verification. In:
Joshi, R., Müller, P., Podelski, A. (eds.) VSTTE 2012. LNCS, vol. 7152, pp. 83–97. Springer,
Heidelberg (2012), http://dx.doi.org/10.1007/978-3-642-27705-4

11. Floyd, R.W.: Assigning meanings to programs. In: Schwartz, J.T. (ed.) Mathematical Aspects
of Computer Science. Proceedings of Symposia in Applied Mathematics, vol. 19, pp. 19–32.
American Mathematical Society, Providence (1967)

12. Gligoric, M., Gvero, T., Jagannath, V., Khurshid, S., Kuncak, V., Marinov, D.: Test genera-
tion through programming in UDITA. In: Proceedings of the 32nd ACM/IEEE International
Conference on Software Engineering, ICSE 2010. vol. 1, pp. 225–234. ACM, New York
(2010)

13. Hoare, C.A.R.: An axiomatic basis for computer programming. Commun. ACM 12(10),
576–580 (1969)

14. Marinov, D., Khurshid, S.: TestEra: A novel framework for automated testing of Java pro-
grams. In: Proceedings of the 16th IEEE International Conference on Automated Software
Engineering. pp. 22–31. IEEE Computer Society, Washington, DC (2001)

15. Paraskevopoulou, Z., Hriţcu, C.: A Coq framework for verified property based testing (2014),
http://prosecco.gforge.inria.fr/personal/hritcu/publications/
verified-testing-report.pdf

16. Petiot, G., Kosmatov, N., Giorgetti, A., Julliand, J.: How test generation helps software spec-
ification and deductive verification in Frama-C. In: Seidl, M., Tillmann, N. (eds.) TAP 2014.
LNCS, vol. 8570, pp. 204–211. Springer, Heidelberg (2014)

17. Ruskey, F.: Combinatorial Generation Working Version (1j-CSC 425/520) (2003), http:
//www.1stworks.com/ref/RuskeyCombGen.pdf

18. Seidel, E.L., Vazou, N., Jhala, R.: Type targeted testing. In: Vitek, J. (ed.) ESOP 2015. LNCS,
vol. 9032, pp. 812–836. Springer, Heidelberg (2015)

19. Sullivan, K.J., Yang, J., Coppit, D., Khurshid, S., Jackson, D.: Software assurance by
bounded exhaustive testing. In: Proceedings of the ACM/SIGSOFT International Sympo-
sium on Software Testing and Analysis, ISSTA 2004. pp. 133–142. ACM (July 2004)

20. The OEIS Foundation Inc.: The On-Line Encyclopedia of Integer Sequences (2010), http:
//oeis.org

21. Weber, T.: SMT solvers: New oracles for the HOL theorem prover. International Journal on
Software Tools for Technology Transfer 13(5), 419–429 (Oct 2011)

22. Williams, N.: Abstract path testing with PathCrawler. In: Proceedings of the 5th Workshop
on Automation of Software Test, AST 2010. pp. 35–42. ACM, New York (2010)

23. Zito, A.: quickcheck4c: A QuickCheck for C (2014), http://oeis.org


