
How Test Generation Helps Software Specification and

Deductive Verification in Frama-C⋆

Guillaume Petiot1,2, Nikolai Kosmatov1, Alain Giorgetti2,3, and Jacques Julliand2

1 CEA, LIST, Software Reliability Laboratory, PC 174, 91191 Gif-sur-Yvette France

firstname.lastname@cea.fr
2 FEMTO-ST/DISC, University of Franche-Comté, 25030 Besançon Cedex France
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Abstract. This paper describes an incremental methodology of deductive verifi-

cation assisted by test generation and illustrates its benefits by a set of frequent

verification scenarios. We present STADY, a new integration of the concolic test

generator PATHCRAWLER within the software analysis platform FRAMA-C. This

new plugin treats a complete formal specification of a C program during test gen-

eration and provides the validation engineer with a helpful feedback at all stages

of the specification and verification tasks.
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1 Introduction

Validation of critical systems can be realized using various verification methods based

on static analysis, dynamic analysis or their combinations. Static analysis is performed

on the source code without executing the program, whereas dynamic analysis is based

on the program execution. Both are complementary and can be advantageously com-

bined [10, 3, 14, 6, 7, 5, 18].

Among static techniques, formal deductive verification allows to establish a rig-

orous, mathematical proof that a given annotated program respects its specification.

The modular verification approach requires a formal specification (contract) for each

function describing its admissible inputs and expected results. Modern theorem prov-

ing tools can automatically establish many proofs of correctness, but achieving a fully

successful proof in practice needs a lot of tedious work and manual analysis of proof

failures by the validation engineers. Klein [15] estimates that the cost of one line of for-

mally verified code is about $700. This high cost is explained by the great difficulty of

understanding why a proof fails, and of writing correct and sufficiently complete speci-

fications suitable for automatic proof of contracts for which loop variants and invariants

can be required.

The main motivation of this methodology and tool paper is to study how automatic

test generation can help to write a correct formal specification and to achieve its deduc-

tive verification. The contributions of this paper include:
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– a brief presentation (in Sec. 2) of a combined STAtic/DYnamic tool named STADY.

Within the software analysis framework FRAMA-C [11], this tool fills the gap be-

tween deductive verification and test generation and allows to treat a complete

formal specification (including pre-/postconditions, assertions, loop invariants and

variants) during test generation with PATHCRAWLER [4];

– a methodology of iterative deductive verification taking advantage of feedbacks

provided by test generation (in Sec. 3). Its benefits are illustrated on a set of frequent

verification scenarios;

– a summary of experiments showing STADY’s bug detection power (in Sec. 3.4).

2 STADY Tool Overview

The STADY tool integrates the concolic test generator PATHCRAWLER [4] into the soft-

ware analysis framework FRAMA-C [11], and in particular allows the user to combine

it with the deductive verification plugin WP [11].

FRAMA-C [11] is a platform dedicated to analysis of C programs that includes

various source code analyzers as separate plugins such as WP performing weakest-

precondition calculus for deductive verification, VALUE performing value analysis by

abstract interpretation, etc. FRAMA-C supports ACSL (ANSI C Specification Language)

[2, 11], a behavioral specification language allowing to express properties over C pro-

grams. Moreover, ACSL annotations play a central role in communication between plu-

gins: any analyzer can add annotations to be verified by other ones and notify other

plugins about results of the analysis it performed by changing an annotation status.

The status can indicate that the annotation is valid, valid under conditions, invalid or

undetermined, and which analyzer established this result [9].

For combinations with dynamic analysis, we consider the executable subset of ACSL

named E-ACSL [12, 19]. E-ACSL can express function contracts (pre/postconditions,

guarded behaviors, completeness and disjointness of behaviors), assertions and loop

contracts (variants and invariants). It supports quantifications over bounded intervals

of integers, mathematical integers and memory-related constructs (e.g. on validity and

initialization).

PATHCRAWLER [4] is a structural (also known as concolic) test generator for C

programs, combining concrete and symbolic execution. PATHCRAWLER is based on a

specific constraint solver, COLIBRI, that implements advanced features such as floating-

point and modular integer arithmetics support. PATHCRAWLER provides coverage strate-

gies like k-paths (feasible paths with at most k consecutive loop iterations) and all-paths

(all feasible paths without any limitation on loop iterations). PATHCRAWLER is sound,

meaning that each test case activates the test objective for which it was generated. This

is verified by concrete execution. PATHCRAWLER is also complete in the following

sense: when the tool manages to explore all feasible paths of the program, all features

of the program are supported by the tool and constraint solving terminates for all paths,

the absence of a test for some test objective means that this test objective is infeasible,

since the tool does not approximate path constraints [4, Sec. 3.1].

Given a C program annotated in the executable specification language E-ACSL [11],

STADY first translates its specification into executable C code, instruments the program



for error detection, runs PATHCRAWLER to generate tests for the instrumented code,

and finally returns the results to FRAMA-C. To detect errors, the translation generates

additional branches, enforcing test generation to trigger erroneous cases, and thus to

generate inputs activating the error if such inputs exist. In this way, STADY treats and

triggers errors in assertions, postconditions, loop invariants and variants, and also in

pre- and postconditions of called functions (also called callees). PATHCRAWLER be-

ing complete, whenever test generation terminates without finding any error after an

exhaustive “all-path” coverage, we are sure that the translated E-ACSL properties hold.

If the coverage is only partial but no error occurred, the test generation increases the

confidence that the program respects its specification but cannot guarantee it. However,

errors can be found and used to invalidate the annotations in FRAMA-C even when the

coverage is incomplete.

STADY currently supports most ACSL clauses. Quantified predicates \exists and

\forall and builtin terms as \sum or \numof are translated as loops. Logic functions and

named predicates are handled, however recursivity is currently not supported. \old con-

structs are treated by saving the value of the formal parameters of a function. Validity

checks of pointers are partially supported due to the current limitation of the underlying

test generator: we can only check the validity when a base address is an input pointer.

assert, assumes, behavior, ensures, loop invariant, loop variant and requires clauses are

supported as well. assigns clauses and complex constructs like inductive predicates are

not handled yet and are part of our future work.

3 Verification Scenarios Combining Proof and Testing

During specification and deductive verification, test generation can automatically pro-

vide the validation engineer with a fast and helpful feedback facilitating the verification

task. While specifying a program, test generation may find a counter-example show-

ing that the current specification does not hold for the current code. It can be used at

early stages of specification, even when formal verification has no chances to succeed

yet (e.g. when loop annotations, assertions or callees’ contracts are not yet written). In

case of a proof failure for a specified program property during program proof, when the

validation engineer has no other alternative than manually analyzing the reasons of the

failure, test generation can be particularly useful. The absence of counter-examples after

a rigorous partial (or, when possible, complete) exploration of program paths provides

additional confidence in (resp., guarantee of) correctness of the program with respect

to its current specification. This feedback may encourage the engineer to think that the

failure is due to a missing or insufficiently strong annotation (loop invariant, assertion,

called function contract etc.) rather than to an error, and to write such additional anno-

tations. On the contrary, a counter-example immediately shows that the program does

not meet its current specification, and prevents the waste of time of writing additional

annotations. Moreover, the concrete test inputs and activated program path reported

by the testing tool precisely indicate the erroneous situation. Notice that the objective

is certainly not to fit the specification to (potentially erroneous) code, but to help the

validation engineer to identify the problem (in the specification or in the code) with a

counter-example. Let us illustrate these points on concrete verification scenarios.



1 int delete_substr(char *str, int strlen, char *substr, int sublen, char *dest) {

2 int start = find_substr(str, strlen, substr, sublen), j, k;

3 if (start == -1) {

4 for (k = 0; k < strlen; k++) dest[k] = str[k];

5 return 0;

6 }

7 for (j = 0; j < start; j++) dest[j] = str[j];

8 for (j = start; j < strlen-sublen; j++) dest[j] = str[j+sublen];

9 return 1;

10 }

Fig. 1. Unspecified function delete_substr calling the function of Fig. 2

1 /*@ requires 0 < sublen ≤ strlen;

2 @ requires \valid(str+(0..strlen-1)) ∧ \valid(substr+(0..sublen-1));

3 @ assigns \nothing;

4 @ behavior found:

5 @ assumes ∃ i∈ Z; 0 ≤ i < strlen-sublen ∧
6 @ (∀ j∈ Z; 0 ≤ j < sublen ⇒ str[i+j] == substr[j]);

7 @ ensures 0 ≤ \result < strlen-sublen;

8 @ ensures ∀ j∈ Z; 0 ≤ j < sublen ⇒ str[\result+j] == substr[j];

9 @ behavior not_found:

10 @ assumes ∀ i∈ Z; 0 ≤ i < strlen-sublen ⇒
11 @ (∃ j∈ Z; 0 ≤ j < sublen ∧ str[i+j] 6= substr[j]);

12 @ ensures \result == -1; */

13 int find_substr(char *str, int strlen, char *substr, int sublen);

Fig. 2. Verified function find_substr with a “pretty-printed” E-ACSL contract

Suppose Alice is a skilled validation engineer in charge of specification and deduc-

tive verification of the function delete_substr (Fig. 1). We follow Alice throughout her

validation process. The delete_substr function is supposed to delete one occurrence of

a substring substr of length sublen from another string str of length strlen and to put

the result into dest (pre-allocated for strlen characters), while str and substr should

not be modified. For simplicity, we use arrays rather than usual zero-terminated strings.

The delete_substr function returns 1 if an occurrence of the substring was found and

deleted, and 0 otherwise. We assume Alice has already successfully proved the correct-

ness of find_substr (Fig. 2) supposed to return the index of an occurrence of substr in

str if this substring is present, and −1 otherwise.

Alice first writes the following precondition (added before line 1 of Fig. 1):

requires 0 < sublen ≤ strlen;

requires \valid(str+(0..strlen-1));

requires \valid(dest+(0..strlen-1));

requires \valid(substr+(0..sublen-1));

requires \separated(dest+(0..strlen-1), substr+(0..sublen-1));

requires \separated(dest+(0..strlen-1), str+(0..strlen-1));

typically strlen ≤ 5;

We propose here the new clause typically C; that extends E-ACSL and defines the pre-

condition C only for test generation. It allows Alice to strengthen the precondition if she

desires to restrict the (potentially too big) number of paths to be explored by test gen-

eration to user-controlled partial coverage. Here the clause typically strlen ≤5 asks to

cover all feasible paths where str is of length 5 or less. Ignored by deductive verifica-

tion, this clause does not impact the proof. The extension of ACSL with the typically

keyword is an experimental feature, not available in the distributed version of FRAMA-

C.



3.1 Early Validation

Now Alice specifies that the function can assign only the array dest, and defines the

postcondition for the case when the substring does not occur in the string. She adds the

following (erroneous) clauses into the contract after the precondition defined above:

assigns dest[0..strlen-1];

behavior not_present:

assumes !(∃ i∈ Z; 0 ≤ i < strlen-sublen ∧
(∀ j∈ Z; 0 ≤ j < sublen ⇒ str[i+j] 6= substr[j]));

ensures ∀ k∈ Z; 0 ≤ k < strlen ⇒ \old(str[k]) == dest[k];

ensures \result == 0;

To validate it before going further, Alice applies STADY. It runs test generation and

reports that both ensures clauses are invalidated by the counter-example strlen = 2,

sublen = 1, str[0] = ’A’, str[1] = ’B’, substr[0] = ’A’, dest[0] = ’B’ and \result = 0.

Alice sees that in this case the string substr has to be found in the string str and the

behavior not_present should not apply, so its assumes clause must be erroneous. This

helps Alice to correct the assumption by replacing 6= with ==, to get:

assumes !(∃ i∈ Z; 0 ≤ i < strlen-sublen ∧
(∀ j∈ Z; 0 ≤ j < sublen ⇒ str[i+j] == substr[j]));

Running STADY again reports that all feasible paths with strlen ≤5 have been covered

(within 3.4 sec.) and 9442 test cases have been successfully generated and executed.

Alice is now pretty confident that this behavior is correctly defined.

For the complementary case Alice copy-pastes the not_present behavior and (wrongly)

modifies it into the following behavior:

behavior present:

assumes ∃ i∈ Z; 0 ≤ i < strlen-sublen ∧
(∀ j∈ Z; 0 ≤ j < sublen ⇒ str[i+j] == substr[j]);

ensures ∃ i∈ Z; 0 ≤ i < strlen-sublen ∧
(∀ j∈ Z; 0 ≤ j < sublen ⇒ \old(str[i+j]) == \old(substr[j])) ∧
(∀ k∈ Z; 0 ≤ k < i ⇒ \old(str[k]) == dest[k]) ∧
(∀ l∈ Z; i ≤ l < strlen ⇒ \old(str[l+sublen]) == dest[l]);

ensures \result == 1;

Again, Alice runs STADY. The tool reports an out-of-bounds error in accessing the

element of str at index l+sublen in the last ensures. This helps Alice to understand that

the upper bound of index l should be strlen-sublen instead of strlen. She fixes this

error and re-runs STADY. Test generation reports that 13448 test cases cover without

errors the feasible paths for strlen ≤5. Alice is now satisfied with the defined behaviors.

Notice that these cases exhibit errors in the specification. In other cases errors could be

in the program (cf Sec. 3.4).

3.2 Incremental Loop Validation

Alice now specifies as follows the first for-loop at line 4 in Fig. 1:

loop invariant ∀ m∈ Z; 0 ≤ m < k ⇒ dest[m] == \at(str[m],Pre);

loop assigns k, dest[0..strlen-1];

loop variant strlen-k;



Then Alice runs WP. The deductive verification tool cannot validate the postcondition

of delete_substr, in particular because the other two loops are not yet specified. How-

ever, WP could validate the annotations of the first loop. Here it fails, and Alice does

not know whether it is because the loop specification is already incorrect, or because it

is not complete enough to be verified. She runs STADY, which does not find any error

in the loop specification and the postcondition, after 15635 test cases. Alice now be-

lieves that loop specification is valid but incomplete. This confidence helps her to add

an additional invariant

loop invariant 0 ≤ k < strlen;

defining the bounds for k. Alice tries again to prove the loop, and WP fails again.

She runs STADY and this time the new loop invariant is invalidated. After analyzing the

failure on a simple counter-example, Alice understands that the loop invariant k <strlen

is not correct. Indeed, k is equal to strlen after the last iteration, so the loop invariant

should say k ≤strlen. After fixing this error, WP succeeds to prove the loop annotations.

Similarly, Alice iteratively specifies and verifies the other two loops.

The now completely specified function delete_substr can be fully proved by WP.

However its default timeout (10 seconds per property) has to be significantly extended

(e.g. to 50 seconds per property). The fact that test generation achieves (within only 4

sec.!) a significant partial coverage (restricted by the typically clause for testing) and

finds no error convinces Alice to increase the timeout, that could be a waste of time

when a counter-example can show why the program does not respect the specification.

3.3 Adaptation of Callees’ Contracts for Modular Verification

It often happens that the contract of a called function is fully proved, but is too weak

to prove the caller. For instance assume that the clause at line 7 of Fig. 2 is missing.

Running WP on the whole program, Alice sees that find_substr is totally proved, but

the postcondition and loop annotations of delete_substr are not proved. Since test gen-

eration does not find any counter-example, Alice believes that some necessary clause

is too weak or missing. Moreover, all properties depending on the behavior not_found

being fully proved, Alice reasonably suspects that the found behavior of find_substr is

not strong enough.

3.4 Detecting Errors in Source Code

Counter-examples generated by STADY can also help to detect potential errors in the

code. To evaluate its bug detection ability, we specified in E-ACSL 26 programs mostly

taken from the TACAS 2014 Competition, generated 1088 mutants (that mimic frequent

programming errors) and applied STADY to detect errors in them. The E-ACSL contract

in mutants was not changed. 96.68% of non equivalent mutants have been successfully

reported as buggy.

4 Conclusion and Future Work

We showed by a number of selected verification scenarios how automatic test generation

provides a useful feedback that helps the validation engineer to test the conformance of



a program to its (even partial) specification, identify errors, understand them thanks to

generated counter-examples, and finally find missing, insufficient or wrong annotations,

or detect bugs in the code. These scenarios sketch an iterative methodology assisted

by test generation that makes deductive verification easier, less costly in time, more

interactive and less error-prone. We presented the STADY tool, integrating a concolic

test generator into FRAMA-C. A more detailed description of the STADY tool, some

verification scenarios and initial experiments are available in [17].

Among previous combinations of static and dynamic analyses, [3, 14] developed

combinations of predicate abstraction and software testing. [5] described HOL-TestGen,

a formally verified test-system extending the interactive theorem prover Isabelle/HOL.

The design of JML accommodates both deductive and runtime verification [16]. Com-

binations of deductive verification and testing for imperative languages were recently

studied and implemented for C# programs specified with Boogie in [18], and combining

Dafny and Pex in [7]. In [8], the specification-based random testing tool Quickcheck is

used to find counter-examples to invariants that have not been formally verified by au-

tomated theorem provers. [13] described an approach to show the correctness of a Java

program and in case of a verification failure to show a counter-example or to guide the

user. A counter-example is found based on information contained in proof trees of failed

verification attempts, so the process has to start with a proof attempt. In our approach

it is not necessary to start with a proof, the user may start by testing if she thinks the

program is more likely to contain bugs. [1] addressed the verification of first-order logic

axioms, that are provided by the user to theorem provers and supposed to hold. In this

work, model-based random testing is used to find counter-examples to axiomatizations,

but no coverage is ensured.

Our work continues these efforts for C programs in the FRAMA-C framework and

proposes a methodology of incremental specification and deductive verification assisted

by test generation. The SANTE method [6] proposed a combination of value analysis,

slicing and test generation in order to detect runtime errors. Our present work combines

deductive verification with testing, treats complete E-ACSL specifications (while SANTE

treated only simple assertions) and thus handles in addition a large class of functional

properties that were not supported in SANTE.

Future work includes further evaluation of the proposed methodology, experiments

on real-size programs and a better support of E-ACSL constructs in our implementation

(inductive predicates, assigns clauses, validity checks for non-input pointers).
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