
Instrumentation of Annotated C Programs

for Test Generation

Guillaume Petiot∗†, Bernard Botella∗, Jacques Julliand†, Nikolai Kosmatov∗ and Julien Signoles∗

∗ CEA, LIST, Software Reliability Laboratory, PC 174, 91191 Gif-sur-Yvette France

Email: firstname.lastname@cea.fr
† FEMTO-ST/DISC, University of Franche-Comté, 25030 Besançon Cedex France

Email: firstname.lastname@femto-st.fr

Abstract—Software verification and validation often rely on
formal specifications that encode desired program properties.
Recent research proposed a combined verification approach in
which a program can be incrementally verified using alterna-
tively deductive verification and testing. Both techniques should
use the same specification expressed in a unique specification
language. This paper addresses this problem within the FRAMA-
C framework for analysis of C programs, that offers ACSL as a
common specification language. We provide a formal description
of an automatic translation of ACSL annotations into C code
that can be used by a test generation tool either to trigger and
detect specification failures, or to gain confidence, or, under some
assumptions, even to confirm that the code is in conformity
with respect to the annotations. We implement the proposed
specification translation in a combined verification tool STADY.
Our initial experiments suggest that the proposed support for a
common specification language can be very helpful for combined
static-dynamic analyses.

Keywords: specification language, C program instrumenta-
tion, test generation, deductive verification, combinations of static
and dynamic analyses, Frama-C

I. MOTIVATION

Software verification and validation usually rely on a
formal specification language in which properties are encoded.
In a scenario where a program is verified using a combination
of verification tools, these tools must use the same specification
written in a unique language. Our concern is combining deduc-
tive verification and testing within the FRAMA-C framework
for analysis of C programs [1] using ACSL [2], a common
specification language offered by FRAMA-C.

In the current deductive verification practice, when a de-
ductive verification tool does not manage to prove an annotated
program, it usually cannot provide a comprehensive reason of
the proof failure. In those cases, the validation engineer cannot
easily see if some specific specification clauses are wrong, or
if some clauses are not strong enough, or if the C code under
verification is incorrect, or if additional assertions or lemmas,
or a greater timeout are necessary for the deductive verification
tool to finish the proof. Human audit of the specification and
the code in order to understand and fix the issue may take lots
of time and effort, and requires highly experienced validation
engineers.

Various verification scenarios that advantageously combine
deductive verification and testing to verify that a program re-

Work partially funded by EU FP7 (project STANCE, grant 317753).

spects its specification have been proposed in [3]. They suggest
an approach in which the validation engineer incrementally
formalizes the specification and performs the proof combining
deductive verification and testing. Thus, one scenario suggests
that the engineer can validate that the program respects its
(partial) specification during the specification process. Indeed,
the specification task aiming at writing function contracts (with
pre- and postconditions), loop invariants and variants, and
additional assertions necessary to prove a program, is tedious
and entails important risks of errors. So the user may want to
validate (a part of) the postcondition assuming a precondition
and before providing all loop invariants, contracts of called
functions etc., without which the proof cannot succeed. At the
same time, it is perfectly possible to test whether the program
respects its partial specification. If test generation reveals a
counter-example, the user can analyze it step-by-step and
understand from its knowledge of the informal specification or
program requirements if there is an error in the program or in
the specification, and fix it. If test generation does not reveal
any non-conformity, the user acquires some confidence that
the program respects the formal contract, and is encouraged to
pursue the development of the formal specification.

Another scenario proposes incremental verification of
loops. After writing a loop contract (including loop invariants)
for each loop, the validation engineer can run a deductive
verification tool. As long as the loop contract is proven, the
specification effort can be continued. However, when the proof
of the loop contract fails, the user does not know if it is too
strong, or too weak, or if there is an error in the program code,
etc. Here again, the user can run test generation to check the
loop contract and benefit from its feedback. If test generation
reveals a counter-example where the loop contract fails, it
helps the user to understand the reason of the proof failure
and fix the specification or the code. If test execution does not
reveal any error, the user can think that the loop contract is too
weak to prove the program and continues enforcing it. In some
cases and under certain assumptions, the absence of counter-
examples confirms that the program respects its specification.
Notice that the objective of this approach is certainly not to fit
the specification to (potentially erroneous) code, but to help the
validation engineer to identify the problem (in the specification
or in the code) with a counter-example [3].

This combined verification approach requires that the
test generation tool embedded in FRAMA-C correctly handle
ACSL annotations. For this purpose, we propose a formally
described translation of basic ACSL annotations into instru-

mented C code. The objectives of such a formal description of
the translation are two-fold. First, instrumentation based trans-
lation of specification into executable code requires significant
effort to treat an expressive specification language, and merits
to be strictly formalized to allow reusability of the results.
Second, a formal description of translation rules allows to thor-
oughly check its correctness, and in our case helped us to find
a couple of subtle errors that could have remained unnoticed
without this formalization. Moreover, since the absence of
counter-examples can be considered in some cases as a proof
of correctness of a program w.r.t. its specification, a correct
translation of the specification into executable code is crucial to
ensure the correctness of test generation results (the underlying
deductive verification and testing tools are usually assumed
to be correct). Therefore, a formalization of the translation
is a mandatory step to formally establish its correctness, and
constitutes a first step to the design of sound combined static-
dynamic analyses in the FRAMA-C framework.

Context. FRAMA-C [1] is a platform dedicated to analysis
of C programs that includes various source code analyzers as
separate plugins such as WP performing weakest-precondition
calculus for deductive verification, VALUE performing value
analysis by abstract interpretation, etc. FRAMA-C supports
ACSL (ANSI C Specification Language) [2], a behavioral
specification language allowing to express properties over C
programs. In addition to providing formal specifications for C
programs, ACSL annotations play a central role in communi-
cation between plugins: any analyzer can add annotations to
be verified by other ones and notify other plugins about results
of the analysis it performed by changing an annotation status.
The status can indicate that the annotation is valid, valid under
conditions, invalid or undetermined, and which analyzer estab-
lished this result [4]. For combinations with dynamic analysis,
we consider its executable subset E-ACSL [5]. E-ACSL can
express function contracts (with pre/postconditions, guarded
behaviors, completeness and disjointness of behaviors), asser-
tions and loop contracts (with loop variants and invariants).
It includes quantifications over bounded intervals of integers,
mathematical integers and memory-related constructs (e.g. on
validity and initialization).

PATHCRAWLER [6] is a structural (also known as con-
colic [7]) test generator for C programs, combining concrete
and symbolic execution. PATHCRAWLER is based on COL-
IBRI, a constraint solver implementing advanced features such
as floating-point and modular integer arithmetics support.
PATHCRAWLER provides coverage strategies like k-paths (fea-
sible paths with at most k consecutive loop iterations) and
all-paths (all feasible paths without any limitation on loop
iterations). PATHCRAWLER is sound, meaning that each test
case activates the test objective for which it was generated.
This is verified by concrete execution. Unlike some other
concolic tools, PATHCRAWLER does not approximate path
constraints, and is complete in the following sense: when the
tool manages to explore all feasible paths of the program, all
features of the program are supported by the tool and constraint
solving terminates for all paths, the absence of a test for some
test objective means that this test objective is infeasible.

Contributions. We have implemented STADY, a tool
that bridges the gap between STAtic (e.g. WP, VALUE)
and DYnamic (e.g. PATHCRAWLER) analyzers of FRAMA-

C. STADY translates E-ACSL annotations into executable
instrumented C code in order to support test generation for
C programs annotated in E-ACSL. It is implemented as a
FRAMA-C plugin and uses PATHCRAWLER to generate test
cases for the resulting instrumented C program. Since the
analyzers rely on E-ACSL annotations to communicate with
each other, performing a translation from E-ACSL into C is
the most appropriate way to combine a test generator like
PATHCRAWLER with other FRAMA-C analyzers. The target
language of the translation is C because PATHCRAWLER is
naturally capable to check expected properties expressed in this
language (assertions, postconditions,. . .) and offers an original
dedicated support for the precondition of the function under
test (FUT) written in C [8].

The main contributions of this paper include:

• a formal description of the translation rules used to
derive executable C code from an E-ACSL speci-
fication for applying test generation in combination
with deductive verification. This formal description
is given for C and E-ACSL, but its main ideas can
be applicable for other specification formalisms and
imperative programming language kernels;

• a brief presentation of the implementation of these
rules in STADY as part of the FRAMA-C verification
framework;

• a comparison of instrumentation for test generation
and runtime assertion checking (RAC);

• an experiment report showing the efficiency of the
combination of deductive verification and testing in
STADY, in particular, for finding counter-examples for
C programs according to E-ACSL specifications.

The paper is organized as follows. Sec. II presents the E-
ACSL language (Sec. II-A), the treatment of mathematical
integers (Sec. II-B), the running example (Sec. II-C) and gives
general insights about the instrumentation (Sec. II-D). Next,
the rules of the instrumentation are detailed for terms (Sec. III),
for predicates (Sec. IV) and for annotations (Sec. V). Sec. VI
compares some translation issues for test generation and RAC,
and Sec. VII shows our experiments with STADY. Sec. VIII
presents the related work, and finally, Sec. IX concludes.

II. INSTRUMENTATION PROCESS

This section presents the instrumentation process for C
functions annotated in ACSL that we support during test
generation for the annotated code. It will be convenient to
consider that specific labels are introduced for each statement
and annotation inside a function body, as well as for the
beginning and the end of each function body and loop body.
(Strictly speaking, labels cannot be put just before declarations
or “}” in C, but this can be easily fixed by adding a skip
instruction “;” after such labels.) We assume that functions
respect the normal form defined by the syntactic entity function
from the grammar in Fig. 1. In this figure, the superscript
“as X” means that any occurrence of X in the analysis of
the current rule should be replaced with the string referred
by the superscripted syntactic entity. For example, if foo is
the name id of the analyzed function in the rule function,
labels Begf and Endf in this function’s body are replaced by

function ::= /*@ (requires predicate;)*

(typically predicate;)*

(ensures predicate;)* */

typeas T idas f (params) {
Begf : T res;

decl∗ stmt∗

Endf : return res; }
decl ::= type id;

stmt ::= label : assert predicate;

| labelas l : (/*@ loop annot */)?

while (bool expr) {
BegIterl : stmt∗

EndIterl : }
| (label :)? not while stmt

loop annot ::= (loop invariant predicate;)*

(loop variant term;)?

Fig. 1. Grammar of an annotated C function

Begfoo and Endfoo providing unique labels for the beginning
and the end of the function body. Array and pointer accesses
are supposed to be written as *(p+i). The terminal symbols
are presented in a typewriter font. Underlined non-
terminal symbols are not detailed because they are part of
the C or ACSL languages. Terms and predicates are ACSL
expressions, most of them are described in Sec. III and Sec. IV
(see the ACSL documentation [2] for more detail).

A. Overview of the E-ACSL Specification Language

The specification language E-ACSL is a strict executable
subset of ACSL, which is a behavioral specification language
implemented in FRAMA-C. On the one hand, designed as
a subset of ACSL, E-ACSL preserves ACSL semantics.
Therefore, existing FRAMA-C analyzers supporting ACSL
continue to be used with E-ACSL without any change. On the
other hand, the E-ACSL language is executable, that is, all its
annotations can be translated into C and executed at runtime.
Thus it can be used by dynamic analyses and monitors. Due to
these two specific features E-ACSL facilitates combinations
of static and dynamic analyses.

E-ACSL is based on a typed first-order logic in which
terms may contain pure (i.e. side-effect free) C expressions
and special keywords. For instance, the \result keyword allows
the user to talk about the result of a function, while \valid is
a builtin predicate stating that its argument is a valid pointer.
Quantifications are bounded by constraints to finite intervals of
integers in order to remain executable. An EIFFEL-like contract
[9] may be associated to each function in order to specify its
pre- and postconditions. These contracts may be split into sev-
eral named guarded behaviors for which the users may require
completeness and/or disjointness. Assertions, loop invariants
and loop variants may also be associated to statements. We
now focus on two of the most important design choices of the
language: integers and undefinedness.

1) Integers: In addition to all machine types, E-ACSL
terms also include mathematical integers of type integer:
integer constants and operators, as well as logic variables
are of this type. Integer arithmetics is unbounded and never
overflows. E-ACSL holds a small subtyping system to auto-
matically coerce C integral types into mathematical integers.

1 if(x > 0) {

2 /*@ assert x+1 > 0; */ // never fails in unbounded arithm.

3 fassert(x+1 > 0); // may fail in modular arithmetics

4 }

Fig. 3. Properties over integers: naive instrumentation gives false positive

For instance, if x is a C variable of type int, x+1 and 1 are of
type integer and a coercion from int to integer is introduced
when typing x in this context. This design was chosen for
several reasons. First, one of the main goals of FRAMA-C is
program proving by discharging proof obligations to automatic
theorem provers. Such provers usually work much better with
mathematical arithmetics than with modular arithmetics, that
is, bounded arithmetics with overflows. Second, specifications
are usually written without any implementation detail in mind,
and potential overflows are implementation details. Third, it is
still possible to use bounded modular arithmetics when re-
quired by using explicit casts: for instance, (int)(INT_MAX + 1)

is equal to INT_MIN, the smallest representable value of int.
Fourth, this choice makes it much easier to talk about potential
overflows in specifications: for example, thanks to math-
ematical arithmetics, /*@ assert INT_MIN <= x+y <= INT_MAX;*/

specifies in the easiest way that x+y must not overflow. Unless
otherwise stated, “integer” will refer below to “unbounded
integer”.

2) Undefinedness: E-ACSL is executable. However, evalu-
ation of undefined terms like 1/0 is not possible. To solve this
issue, E-ACSL follows Chalin’s Runtime Assertion Check-
ing semantics [10] by stating that semantics of such terms
is “undefined”: E-ACSL uses a 3-valued logic [11] like
SPARK2014 [12] or JML [13]. It is then the responsibility
of the tools interpreting E-ACSL to ensure that an undefined
term is never evaluated. An indirect consequence of this design
is that operators && , || , _?_:_ and ==> in E-ACSL are lazy
(like the C counterparts for the first three of them).

B. Handling Unbounded Integers

Fig. 2 and Fig. 3 exhibit two examples where naive
translation of annotations with mathematical integers leads
to unsoundness. Let x be of type int. The assertion at line
1 of Fig. 2 is obviously false when x = INT_MAX. The naive
translation of this assertion (line 3) uses machine integers
with modular arithmetics (we assume a 32-bit architecture),
so x+1 remains less or equal to INT_MAX for any value of
x, making it impossible to find the assertion violation. The
correct translation for this annotation (sketched at lines 6–
8) maintains the semantics of unbounded integer arithmetics
using an external unbounded integer library (we use GMP,
the GNU Multi-Precision library) to represent values that
may overflow otherwise (like INT_MAX+1 here). It creates and
initializes necessary variables for unbounded integers, then
computes and compares the values as unbounded integers. The
second example (Fig. 3) defines an ACSL assertion (line 2) that
is always correct here: for any positive integer x, its successor
also is positive. The naive instrumentation (line 4) will exhibit
an error for x = INT_MAX: due to modular arithmetics, x+1

overflows and becomes negative, violating the assertion. A
correct translation using unbounded integers (not detailed here)
maintains the expected behavior, so that the assertion remains
valid for any positive integer x. Using the naive translation for
these two examples would result in a false negative in the first

1 //@ assert x+1 <= INT_MAX; // fails with x = INT_MAX since INT_MAX + 1 does not overflow in ACSL

2

3 fassert(x+1 <= 2147483647); // naive instrumentation: never fails in modular arithmetics

4

5 // correct instrumentation with unbounded integers:

6 Z_t var_0; Z_init(var_0); Z_set(var_0, x); Z_t var_1; Z_init(var_1); Z_set(var_1, 1);

7 Z_t var_2; Z_init(var_2); Z_add(var_2, var_0, var_1); Z_clear(var_0); Z_clear(var_1);

8 Z_t var_3; Z_init(var_3); Z_set(var_3, 2147483647); int var_4 = Z_le(var_2, var_3);

9 Z_clear(var_2); Z_clear(var_3); fassert(var_4);

10

11 // correct instrumentation in abbreviated notation:

12
�
var_0 = x;

�
var_1 = 1;

�
var_2 = var_0

⊠
+ var_1

⊠
;

�
var_3 = 2147483647; int var_4 = var_2

⊠
<= var_3

⊠
; fassert(var_4);

Fig. 2. Properties over integers: naive instrumentation gives false negative

1 /*@ requires 0 <= n;

2 requires \valid(t+(0..n-1));

3 typically n <= 6;

4 ensures \result != 0 <==> \exists integer i; 0<=i<\old(n)

5 && \old(*(t+i))==\old(v); */

6 int is_present(int* t, int n, int v) {

7 Begis_present : int res = 0, i = 0;

8 l0:

9 /*@ loop invariant 0 <= i && i <= n;

10 loop variant n - i; */

11 while (i < n) {

12 BegIterl0 :
13 if(*(t+i) == v) { res = 1; break; }

14 i++;

15 EndIterl0 :
16 }

17 Endis_present : return res;

18 }

Fig. 4. Annotated C function deciding if v is present in array t of size n

case, and in a false positive in the second case, undermining
the tool’s correctness and precision. The translation rules for
E-ACSL constructs presented below respect unbounded integer
semantics of E-ACSL mathematical integers and assume the
usage of an external library as illustrated in Fig. 2. To simplify
the notation of code insertions, we will use the abbreviated
notation �

var to indicate that the variable var must be declared
and allocated (with Z_t var; Z_init(var);) at the beginning
of the inserted code, and the notation var

⊠ to indicate that
the variable var must be de-allocated (with Z_clear(var);) at
the end of the inserted code. We will also use underlined
code fragments to indicate that the corresponding operation
(assignment, comparison, . . .) should be translated using corre-
sponding functions from the unbounded integer library. So line
12 of Fig. 2 illustrates abbreviated notation of instrumentation
for lines 6–9. As mentioned in Sec. II-A1, type coercions are
automatically made explicit in the annotations in FRAMA-C,
so x+1 in line 1 of Fig. 2 becomes (integer)x+1.

C. Running Example

We present in Fig. 4 an example of FUT normalized
according to the grammar of Fig. 1. It returns 1 when a
given value is present in a given array, or 0 otherwise. The
instrumented program obtained after translation of annotations
of this function is presented (using abbreviated notation) in
Fig. 5. The generated precondition function is defined at lines
1–6 (Fig. 5), it returns a nonzero value when the precondition
holds. The requires clause in line 1 (Fig. 4) stating that the
array size n is positive is translated as the condition in line
3 (Fig. 5). The requires clause in line 2 (Fig. 4) states that
(t+0), ...,(t+(n-1)) are valid pointers, and leads to the condition
in line 4 (Fig. 5). The typically clause in line 3 of Fig. 4
(translated as line 5 of Fig. 5), is an extension of ACSL defin-
ing a precondition considered only for testing. It strengthens

the precondition to restrict the (potentially too big) number
of paths to be explored by test generation to user-controlled
partial coverage. Here it bounds the state space of n (and thus
the size of t) to [0, 6] (it can be seen as a domain finitization
[14]). The loop invariant in line 9 of Fig. 4 is translated as
lines 13–14 of Fig. 5 to check that the invariant holds before
the first loop iteration, and lines 21–22 of Fig. 5 to check the
preservation of the invariant by any iteration. (An additional
loop invariant \forall integer k; 0<=k<i ==> \old(*(t+k))!=v;

necessary to formally prove the postcondition using deductive
verification was not included in this simplified example). The
loop variant line 10 in Fig. 4 is translated as line 15 of Fig. 5
to check that the variant is positive or zero before the loop,
line 18 of Fig. 5 to back up the value of the variant at the
beginning of the loop, and lines 23–25 of Fig. 5 to check that
it strictly decreases but remains positive or zero, thus ensuring
the termination of the loop. The postcondition at lines 4-5
of Fig. 4 is translated as lines 28–32 of Fig. 5, it states that
\result is non zero if and only if there exists an element of
t equal to v. The values of formal parameters t, n and v are
saved in lines 10–11 (Fig. 5), a new array old_val_t saves the
old values contained in t, it is allocated line 10, filled line 11
and deallocated line 33.

D. Principles of the Instrumentation

Let us describe the principles of instrumentation for an an-
notated function f respecting the grammar of Fig. 1. First, each
input value x (a formal parameter x in params or a global
variable x) of type T is stored as T old_x = x; at the beginning
of the instrumented FUT, i.e. at label Begf , in the decl∗

section. For an input array (or pointer) x, the values are stored
in the dynamically allocated array old_val_x whose size is
inferred from the \valid clause. We also generate an additional
function named f_precond that is used to check the precondition
of the FUT. For the FUT we ensure that the precondition is
assumed by inserting fassume(f_precond(x1, ..., xn)); at label
Begf (cf line 11 in Fig. 5).

Second, any ACSL annotation of the form kwd w (where
keyword kwd belongs to {assert, requires, typically, ensures,
loop variant, loop invariant} and w is a predicate or a term) is
translated. Some other ACSL constructs are not detailed here
because they can be obtained from the described ACSL frag-
ment. For example, behaviors can be rewritten as implications
in ensures annotations, statement contracts can be rewritten
as implicative assert’s and global (resp., loop or statement)
assigns clauses can be rewritten as postconditions (resp., loop
invariants or assertions) checking the non-modification of some
variables.

Each pair (label, annotation) is translated into a sequence
of code insertions (l1, c1) ·(l2, c2) · . . . ·(ln, cn), that represents

1 int is_present_precond(int* t, int n, int v) {

2 Begis_present_precond :

3
�
var_0 = 0;

�
var_1 = n; int var_2 = var_0

⊠
<= var_1

⊠
; if (!var_2) return 0;

4 if (!(fvalidr(t,0,(n-1)))) return 0;

5
�
var_3 = n;

�
var_4 = 6; int var_5 = var_3

⊠
<= var_4

⊠
; if (!var_5) return 0;

6 return 1; }

7

8 int is_present(int* t, int n, int v) {

9 Begis_present :
10 int *old_t = t, *old_val_t = malloc(((n-1)+1)*sizeof(int)), old_n = n, old_v = v, res = 0, i = 0, iter_t;

11 for(iter_t = 0; iter_t < n; iter_t++) *(old_val_t+iter_t) = *(t+iter_t); fassume(is_present_precond(t, n, v));

12 l0 :

13
�
var_0 = 0;

�
var_1 = i; int var_2 = var_0

⊠
<= var_1

⊠
; int var_3 = var_2;

14 if(var_3) {
�
var_4 = i;

�
var_5 = n; int var_6 = var_4

⊠
<= var_5

⊠
; var_3 = var_6; } fassert(var_3);

15
�
var_7 = n;

�
var_8 = i;

�
var_9 = var_7

⊠
- var_8

⊠
; int var_10 = 0 <= var_9

⊠
; fassert(var_10);

16 while(i < n) {

17 BegIterl0 :

18
�
var_11 = n;

�
var_12 = i;

�
var_13 = var_11

⊠
- var_12

⊠
;

�
old_variant = var_13

⊠
;

19 if(*(t+i) == v) { res = 1; break; } i++;

20 EndIterl0 :

21
�
var_14 = 0;

�
var_15 = i; int var_16 = var_14

⊠
<= var_15

⊠
; int var_17 = var_16;

22 if(var_17) {
�
var_18 = i;

�
var_19 = n; int var_20 = var_18

⊠
<= var_19

⊠
; var_17 = var_20; } fassert(var_17);

23
�
var_21 = n;

�
var_22 = i;

�
var_23 = var_21

⊠
- var_22

⊠
; int var_24 = 0 <= var_23

⊠
; int var_25 = var_24;

24 if(var_25) {
�
var_26 = n;

�
var_27 = i;

�
var_28 = var_26

⊠
- var_27

⊠
; int var_29 = var_28

⊠
< old_variant

⊠
; var_25 = var_29; }

25 fassert(var_25);

26 }

27 Endis_present :

28
�
var_30 = 0;

�
var_31 = res; int var_32 = var_30

⊠
!= var_31

⊠
;

�
var_33 = 0;

�
var_34 = old_n;

29 int var_35 = 0;

30 for(�
i_0 = var_33

⊠
; i_0 < var_34

⊠
&& !var_35; i_0++

⊠
)

31 {
�
var_36 = i_0; int var_37 = var_36

⊠
; var_35 = *(old_val_t + var_37) == old_value; }

32 fassert((!var_32 || var_35) && (!var_35 || var_32));

33 free(old_val_t); return res; }

Fig. 5. Instrumented version of program of Fig. 4

a list of fragments of C programs c1, c2, . . . , cn where the
fragment ci will be inserted into the instrumented program
at label li. Program fragments ci are parts of a correct
program that might be incomplete if taken separately since
a syntactically complete statement can be split into several
insertions. When there are several fragments to insert in the
same location l, they are inserted according to their order
in the list. ACSL annotations are translated separately, and
the resulting sequences of insertions are treated respecting the
order of annotations in the source program.

Translation of annotations is defined by the rules in Sec. V.
It requires translating ACSL terms and predicates. These
transformations are described by the rules in Sec. III and
Sec. IV. In these rules we use the following notation:

• p, p1, p2 and p3 are E-ACSL predicates;

• t, t1, t2 and t3 are E-ACSL terms and w is either a
predicate or a term;

• c, c1, c2 and c3 are fragments of C programs;

• e, e1, e2 and e3 are C expressions;

• l, l1, l2, l3, Begf , Endf , BegIterl and EndIterl are
program labels;

• i is an identifier of a bounded variable in an ACSL
predicate and an iterating counter in a C program, x
is an identifier of a C variable;

• I , I1, I2 and I3 are lists of code insertions (li, ci).

We denote by res, var_n, i_n, old_x, old_val_x and
old_variant, fresh variables, that is, identifiers different from
all other identifiers of the instrumented program. When we use
several times a rule introducing a fresh variable, all occurrences

must be different. It can be easily implemented incrementing
the number n in var_n or i_n and replacing x in old_x or
old_val_x by the names of parameters of f or global variables.

For convenience, we assume that all bounded variables in
annotations and all program variables are different from one
another. In particular, we can translate bounded variables into
C without renaming.

III. TERM TRANSLATION

Let us denote (l, t : T) 7→ ((l1, c1) ·(l2, c2) · . . . ·(ln, cn), e)
an instance of the partial function τ mapping an E-ACSL term
t of type T at label l to the pair (I, e) where I is a list of
code insertions (li, ci), e is a C expression, and T can be Z

(integer) or ctype. We only consider the following types as
included in ctype: ptr, that can be a pointer of any type, and
int that is the regular C type. Other integral C types such as
char, long, unsigned could be supported in the same way, but
are not considered for simplicity and readability purposes. The
expression e is pure (i.e. has no side effects) and evaluates the
value of the term at the given point. The evaluation of e often
requires additional computations, that are performed by the
inserted program fragments resulting from the predicate and
term translation. For example, a quantified term requires the
computation of a value throughout a for loop (see Fig. 9). In
this case, the second element of the returned pair, e, is the
value of a variable computed by the loop. When a term t can
be directly translated without additional C code, the sequence
of code insertions is empty and denoted ∅. For a term t : Z,
the translation result e is always a variable of type Z_t (that
justifies de-allocation e

⊠ e.g. in Fig. 7).

Fig. 6 describes the rules for identifiers (τ -VAR), for the
\result term (τ -RES) and constants (τ -CONST). Two rules

τ -OLD
(l, \old(x) : ctype) 7→ (∅, old_x)

τ -VAR
(l, x : ctype) 7→ (∅, x)

τ -OLD-VAL
(l, t : int) 7→ (I, e)

(l, \old(*(x+t)) : ctype) 7→ (I, *(old_val_x+e))

τ -RES
(l, \result : ctype) 7→ (∅, res)

τ -CONST
(l, cst:Z) 7→ ((l,�var_n = cst), var_n)

Fig. 6. Translation rules for constants, identifiers, and \old terms

are considered for the ACSL construct \old. Applied to an
identifier x, it is translated as the fresh variable old_x storing
the value at the entry of the function. Applied to a memory
access (rule τ -OLD-VAL), we use the dynamically allocated
array old_val_x that memorizes the elements of an array x

at the entry of the function (cf Sec. II-D). The special term
\result translated by the rule τ -RES denotes the return value
of the function in ACSL written into the fresh variable res.
That variable is unique after the normalization of the abstract
syntax tree (AST) by FRAMA-C. The rule τ -CONST states that
an integer variable is defined to store the integer constant.

Fig. 7 details the rules for coercions, from integer to C
type and from C type to integer.

Fig. 8 details the rules for unary operations (τ -UNOP∗),
binary operations (τ -BINOP∗) and the ternary condition on
terms (τ -IF). τ -UNOP1 deals with pointer indirection (⋆). In
τ -UNOP2, the logical not (!) does not involve integers. In τ -
UNOP3, op is the unary minus (-) or the bitwise complement
(∼) and is an operation from and to integer. In τ -BINOP1, the
left operand is a pointer so op must be + or -, whereas the
right operand is an int (if it is an integer, it will be coerced
to int using the rule τ -COERCE1 for pointer arithmetics). In
τ -BINOP2, op is a comparison operator over integer values and
the result of the comparison is stored in an int. In τ -BINOP3,
op is any of the arithmetic operators: +, -, /, %, <<, >>, |, &,
ˆ over integers. In the rule τ -IF, the evaluation of t2 and t3
are in conditional branches: only one of them is computed,
depending on the evaluation of t1.

Fig. 9 presents the rules for translating the builtin logic
functions \sum (τ -SUM) and \numof (τ -NUMOF). The rule for
function \product is similar to the rule τ -SUM. The rule τ -
SUM over integers initializes a fresh integer variable var_n,
initialized to 0, and increments its value with the value of
the \lambda-term t3 at each iteration. The rule τ -NUMOF also
initializes a fresh integer variable var_n to 0, but increments it
only when the (non-integer) \lambda-term t3 is evaluated to a
non-null expression.

IV. PREDICATE TRANSLATION

Similarly to the translation function τ for terms (see
Sec. III), the translation function for predicates, denoted π,
is defined as a partial function mapping a label and an ACSL
predicate to a sequence of code insertions (li, ci) and a C
expression e ∈ {0, 1}. When a predicate p can be directly
translated without additional C code, the sequence of code
insertions is empty and denoted ∅.

We define in Fig. 10, Fig. 11 and Fig. 12 the transformation
rules for the main ACSL predicates we handle.

Fig. 10 details the translation rules for the simplest pred-
icates of the ACSL language. The rules π-TRUE and π-
FALSE state that true (resp. false) are translated into 1
(resp. 0). The rules π-EQUIV and π-NOT are compositional:
the subpredicates are translated recursively, then the result of

the translation of the predicate is rebuilt from the values of
the subpredicates. The rules π-AND, π-OR and π-IMPL are
reflective of the laziness of the ACSL semantics of those
operators: the first operand is always evaluated (in I1) but the
second one is only evaluated (in I2) when necessary. The rule
π-IF is the counterpart of τ -IF (cf Sec. III) for predicates. In
our running example of Fig. 4, translating the postcondition
\result != 0 <==> \exists integer i; 0<=i<n && *(t+i)==v re-
quires the translation of the predicates \result != 0 and
\exists(...) that are respectively translated as var_32 and
var_35. These two predicates are put together to build the
translation of the composed predicate, that is, according to
π-EQUIV, (!var_32 || var_35) && (!var_35 || var_32) (line 32
of Fig. 5). In the rule π-REL, op is any of these operators:
<, <=, >, >=, ==, !=.

Fig. 11 shows the translation rules for the \valid predicate
that holds if its parameter points to a valid memory location
and can be dereferenced. Basic usages are \valid(t) for check-
ing the validity of a single pointer t, and \valid(t1+(t2..t3))

for checking the validity of pointer t1 within offset range
t_2..t_3. The rules π-VALID and π-VALID-RANGE cover both
usages. We assume that we can evaluate the validity of the
memory location a pointer points to by the means of a function
fvalid, and the validity of a pointer within an offset range
by fvalidr. In our running example of Fig. 4, the predicate
\valid(t+(0..n-1)) in the requires clause of line 2 is translated
to fvalidr(t,0,(n-1)) (line 4 of Fig. 5). Full support of these
predicates requires a precise low-level memory representation.

The rule π-EXISTS (Fig. 12) translates the existen-
tially quantified predicate \exists other integer values.
It updates a variable var_n (initially set to false) at
each iteration of the loop until all values of i are
considered or until var_n is evaluated to true. This
rule also treats the universally quantified predicate (l,
\forall integer i; t1<=i<t2 ==> p) since it is equivalent to (l,
! (\exists integer i; t1<=i<t2 && !p)). In Fig. 4, the quanti-
fied predicate \exists integer i; 0<=i<n && *(t+i)==v of line
4 is translated in lines 29–31 of Fig. 5 and the fresh variable
containing the value of the predicate after its evaluation is
var_35 (declared at line 29).

V. ANNOTATION TRANSLATION

Now we define the translation rules for annotations that
allow to trigger annotation failures and enforce test generation
of erroneous inputs. For each annotation, a fragment of a C
program ending by a condition test is inserted into the program.
The test generator will try to cover all feasible paths, thus
activating the error if such inputs exist. The rules are of the
following form:

(l1, w) 7→ (I1, e1) . . . (ln, w) 7→ (In, en)

(l, kwd w;) 7→ gkwd(l, (I1, e1), . . . , (In, en))

This rule pattern states that if the term or predicate w
at label li is translated (by τ or π) as (Ii, ei), then the

τ -COERCE1

(l, t : Z) 7→ (I, e)

(l, (int)(t : Z)) 7→ (I · (l, int var_n = e⊠;), var_n)
τ -COERCE2

(l, t : int) 7→ (I, e)

(l, (Z)(t : int)) 7→ (I · (l,�var_n = e;), var_n)

Fig. 7. Translation rules for coercions

τ -BINOP1
(l, t1 : ptr) 7→ (I1, e1) (l, t2 : int) 7→ (I2, e2) op ∈ {+,−}

(l, (t1 op t2) : ptr) 7→ (I1 · I2, e1 op e2)
τ -UNOP1

(l, t : ptr) 7→ (I, e)

(l, (* t) : ctype) 7→ (I, * e)

τ -BINOP2
(l, t1 : Z) 7→ (I1, e1) (l, t2 : Z) 7→ (I2, e2) op ∈ {==, !=, <, <=, >, >=, ||, &&}

(l, (t1 op t2) : int) 7→ (I1 · I2 · (l, int var_n = e1⊠ op e2⊠;), var_n)
τ -UNOP2

(l, t : int) 7→ (I, e)

(l, (! t) : int) 7→ (I, ! e)

τ -BINOP3
(l, t1 : Z) 7→ (I1, e1) (l, t2 : Z) 7→ (I2, e2) op ∈ {+, -, /, %, <<, >>, |, &, ˆ}

(l, (t1 op t2) : Z) 7→ (I1 · I2 · (l,�var_n = e1⊠ op e2⊠;), var_n)
τ -UNOP3

(l, t : Z) 7→ (I, e) op ∈ {−,∼}

(l, (op t) : Z) 7→ (I, ·(l, e = op e;), e)

τ -IF
(l, t1 : Z) 7→ (I1, e1) (l, t2 : Z) 7→ (I2, e2) (l, t3 : Z) 7→ (I3, e3)

(l, (t1 ? t2 : t3) : Z) 7→ (I1 · (l, if(e1⊠ != 0) {) · I2 · (l,�var_n = e2⊠;} else {) · I3 · (l,�var_n = e3⊠;}), var_n)

Fig. 8. Translation rules for unary and binary operations

τ -SUM
(l, t1 : Z) 7→ (I1, e1) (l, t2 : Z) 7→ (I2, e2) (l, t3 : Z) 7→ (I3, e3)

(l, (\sum(t1, t2, \lambda integer i; t3)) : Z) 7→

(I1 · I2 · (l,�var_n = 0; for(�
i_n = e1

⊠
; i_n <= e2

⊠
; i_n++

⊠
){) · I3 · (l, var_n += e3

⊠
;}), var_n)

τ -NUMOF
(l, t1 : Z) 7→ (I1, e1) (l, t2 : Z) 7→ (I2, e2) (l, t3 : int) 7→ (I3, e3)

(l, (\numof(t1, t2, \lambda integer i; t3)) : Z) 7→

(I1 · I2 · (l,�var_n = 0; for(�i_n = e1
⊠
; i_n <= e2

⊠
; i_n++

⊠
) { · I3 · (l, if(e3) var_n++;}), var_n)

Fig. 9. Translation rules for builtin logic functions

π-EQUIV
(l, p1) 7→ (I1, e1) (l, p2) 7→ (I2, e2)

(l, p1 <==> p2) 7→ (I1 · I2, ((!e1 || e2) && (!e2 || e1)))

π-AND
(l, p1) 7→ (I1, e1) (l, p2) 7→ (I2, e2)

(l, p1 && p2) 7→ (I1 · (l, int var_n = e1; if(var_n) {) · I2 · (l, var_n = e2; }), var_n)
π-TRUE

(l, \true) 7→ (∅, 1)

π-OR
(l, p1) 7→ (I1, e1) (l, p2) 7→ (I2, e2)

(l, p1 || p2) 7→ (I1 · (l, int var_n = e1; if(!var_n) {) · I2 · (l, var_n = e2; }), var_n)
π-FALSE

(l, \false) 7→ (∅, 0)

π-IMPL
(l, p1) 7→ (I1, e1) (l, p2) 7→ (I2, e2)

(l, p1 ==> p2) 7→ (I1 · (l, int var_n = 1; if(e1) {) · I2 · (l, var_n = e2; }), var_n)
π-NOT

(l, p) 7→ (I, e)

(l, !p) 7→ (I, !e)

π-IF
(l, t : Z) 7→ (I1, e1) (l, p2) 7→ (I2, e2) (l, p3) 7→ (I3, e3)

(l, t ? p2 : p3) 7→ (I1 · (l, int var_n; if(e1⊠ != 0) {) · I2 · (l, var_n=e2; } else {) · I3 · (l, var_n=e3; }), var_n)

π-REL
(l, t1 : Z) 7→ (I1, e1) (l, t2 : Z) 7→ (I2, e2) op ∈ {<, <=, >, >=, ==, !=}

(l, t1 op t2) 7→ (I1 · I2 · (l, int var_n = e1⊠ op e2⊠;), var_n)

Fig. 10. Translation rules for simplest predicates

fassume(f_precond(...));

g();

...

{Pre}

{Post}

FUT f

f precond

fassert(g_precond(...));

...

{Pre}

{Post}

callee g

g precond

Fig. 13. Pre-Post translation scheme for the FUT and called functions

property kwd w involving w at program point l will be
translated by some composition function of code insertions of
each Ii and of the expressions ei. The particular composition
function, denoted gkwd, depends on the annotation kind. In
Fig. 14 and Fig. 15 we present the translation rules for each
annotation kind. Suppose fassert is a C function checking an
expression. We define the condition e that must be tested for
each annotation. The test is expressed by applying the function
fassert, that is expanded to a conditional if. Test generation
tries to cover both branches. If the expected property is false,

α-ASSERT
(l, p) 7→ (I, e)

(l, assert p;) 7→ I · (l, fassert(e);)

α-POST
(Endf , p) 7→ (I, e)

(Endf , ensures p;) 7→ I · (Endf , fassert(e);)

α-PRE
(Begf precond, p) 7→ (I, e)

(Begf ,

{

typically p;

requires p;
) 7→ I · (Begf precond, if(!e) return 0;)

Fig. 14. Translation rules for assert, postcondition and precondition

the failure is reported and the exploration switches to another
branch.

Fig. 14 describes the translation rules for an assertion at la-
bel l (α-ASSERT), a postcondition (α-POST) and a precondition
(α-PRE) that are considered to be stated resp. at labels Endf
and Begf . The rule α-ASSERT simply checks the translated
predicate at label l with the function fassert. The rule α-POST

checks the predicate at the end of the function being translated.
The rule α-PRE checks the predicate of a precondition in a
separate function that we call f_precond, returning 0 if one of
the requires or typically clauses does not hold, or 1 otherwise.
This function has to be called with the same formal parameters
as the function being translated. Since the precondition is
assumed for the function under test and must be ensured for
a called function, its result has to be asserted in the case of

π-VALID
(l, t : ptr) 7→ (I, e)

(l, \valid(t)) 7→ (I, fvalid(e))
π-VALID-RANGE

(l, t1 : ptr) 7→ (I1, e1)(l, t2 : int) 7→ (I2, e2)(l, t3 : int) 7→ (I3, e3)

(l, \valid(t1+(t2..t3))) 7→ (I1 · I2 · I3, fvalidr(e1,e2,e3))

Fig. 11. Translation rules for memory validity predicate

π-EXISTS
(l, t1 : Z) 7→ (I1, e1) (l, t2 : Z) 7→ (I2, e2) (l, p) 7→ (I, e)

(l, \exists integer i; t1 <= i < t2 && p) 7→

(I1 · I2 · (l, int var_n = 0; for(�i_n = e1
⊠
; i_n < e2

⊠
&& !var_n; i_n++

⊠
) {) · I · (l, var_n = e; }), var_n)

Fig. 12. Translation rule for quantified predicate

a callee and assumed in the case of the function under test.
Fig. 13 illustrates where pre/postconditions checks are inserted
for a FUT f that calls g1, that calls g2, etc. So for each
function, a check fassert(h_precond(x1, x2, ..., xn)); (resp.
fassume(h_precond(x1, x2, ..., xn));) is inserted at the label
Begh if h is a callee (resp. FUT), where x1, x2, ..., xn are
the formal parameters of h, and the fassume function restricts
test generation to input values for which it returns true. In
the example of Fig. 4, the requires clause lines 1-2 and the
typically clause line 3 are translated to the lines 3–5 of Fig. 5.
The validity of the is_present_precond precondition is assumed
line 11 of Fig. 5. Finally, the ensures clause lines 4-5 is
translated as lines 28–32 in Fig. 5.

The translation rules for the loop invariants (α-INVARIANT)
and loop variants (α-VARIANT) for a loop at label l are
presented in Fig. 15. The rule α-INVARIANT checks the
predicate of the loop invariant before the loop, and after each
iteration of the loop (i.e. at the predefined label EndIterl). The
rule α-VARIANT first checks that the variant term is positive
or zero before the first loop iteration. Then, at the beginning
of each loop iteration, it saves the previous value of the term
in a fresh variable old_variant. Finally, it checks at the end
of each iteration that the current value of the variant is still
positive or zero and is strictly decreasing (compared to its
value in the previous iteration). In the running example of
Fig. 4, translating the loop invariant line 9 results in lines
13–14 and 21–22 in Fig. 5, while translating the loop variant

line 10 results in lines 15, 18 and 23–25 in Fig. 5.

VI. INSTRUMENTATION FOR TEST GENERATION VS

RUNTIME ASSERTION CHECKING

Instrumentation based translation of ACSL annotations into
C code has been implemented in two FRAMA-C [1] plugins:
E-ACSL2C [5], [15] that generates an instrumented program
for Runtime Assertion Checking (RAC), and STADY, that in-
struments a program for Test Generation with PATHCRAWLER

[6]. This section discusses similarities and differences between
both kinds of instrumentation.

Test generation and runtime checking both need to generate
executable code and so consider only an executable subset of
the specification language. Therefore, most rules defined in
Sec. III, IV and V for test generation are also valid for RAC.

Precondition of the function under test (FUT). One
difference is the treatment of the precondition of the FUT.
In RAC, it is usually checked as any other annotation. In
test generation, it is used to avoid testing the program on
inadmissible values for which the program is not supposed
to work correctly. Hence, the precondition of the FUT should
be assumed during test generation to ensure that all generated
test inputs respect the precondition of the FUT (cf Fig. 13).

Besides, the treatment of the precondition of the FUT
in PATHCRAWLER has two optimizations. First, an internal
mechanism of unquantified and quantified preconditions allows
a direct translation of ACSL preconditions into constraints
supported in an efficient manner. Hence, for precondition
patterns that can be expressed by this mechanism, a translation
into C code is not necessary for PATHCRAWLER. Second,
for the remaining preconditions translated into a C function,
PATHCRAWLER offers a specific efficient mechanism [8]. A
call to fassume (adding the constraints of the precondition to
the constraint store before the path predicate in the FUT) can
be replaced in PATHCRAWLER by a dedicated support for late
precondition (where precondition constraints are posted after
other path constraints of the FUT). Thus the call to fassume

for the FUT in PATHCRAWLER is not needed (cf Fig. 13).

Memory-related constructs. Runtime checkers also re-
quire a complex instrumentation framework to treat memory-
related constructs where each memory related operation is
instrumented and relative memory block metadata is stored
so that it can be extracted when it is necessary to evaluate
a memory-related ACSL annotation [15]. Some of these con-
structs can be handled symbolically in concolic testing without
additional instrumentation. The functions fvalid and fvalidr

are builtin C functions defined by PATHCRAWLER that return
the value of validity of a pointer [16]. They actually support
global variables and formal parameters of the function under
test.

Unbounded integers. While translation of ACSL mathe-
matical integers relying on an external library for unbounded
integers (like GMP) is appropriate and sufficient for RAC,
it will be quite inefficient if the library function code is
directly handled by test generation. Indeed, test generation
on the instrumented code would have to treat much more
complex code, with lots of additional function calls, dynamic
memory allocation and de-allocation, etc. This can be avoided
again using symbolic execution of the test generation tool.
PATHCRAWLER offers dedicated builtin support for GMP
numbers and operations that are efficiently translated into
appropriate constraints on unbounded integers and handled by
the underlying constraint solver.

Runtime errors. Straightforward translation of annotations
into C may introduce runtime errors due to annotations with
undefined terms (such as 1/0, cf Sec. II-A2). This issue can
be easily solved for test generation exactly as proposed in
[5] for RAC, by an additional guard generation phase by
running the FRAMA-C/RTE plugin [1] on the instrumented
code to add annotations preventing runtime errors, and finally
running the instrumentation again on these new annotations.
Runtime errors related to unbounded integer (division of a
GMP integer by 0, overflow during a type coercion (int)(t:Z),
etc.) are not treated by RTE, but they can be easily prevented
by adding suitable checks in the corresponding rules. For

α-INVARIANT
(l, p) 7→ (I1, e1) (EndIterl, p) 7→ (I2, e2)

(l, loop invariant p;) 7→ I1 · (l, fassert(e1);) · I2 · (EndIterl, fassert(e2);)

α-VARIANT
(l, t) 7→ (I1, e1) (BegIterl , t) 7→ (I2, e2) (EndIterl, t) 7→ (I3, e3)

(l, loop variant t;) 7→

I1 · (l, fassert(0 <= e1
⊠
);) · I2 · (BegIterl ,

�
old_variant = e2

⊠
;) · I3 · (EndIterl, fassert(0 <= e3 && e3

⊠
< old_variant

⊠
);)

Fig. 15. Transformation rules for loop annotations: invariant and variant

example time (s.) # paths

array-unsafe 1.299 9

count-up-down-unsafe 1.285 3

eureka-01-unsafe 1.355 48

for-bounded-loop1-unsafe 1.320 11

insertion-sort-unsafe 16.530 730

invert-string-unsafe 1.359 48

linear-search-unsafe 3.624 2766

matrix-unsafe 1.367 22

nec20-unsafe 1.463 1035

string-unsafe 1.362 48

sum01-bug02-base-unsafe 1.335 26

sum01-bug02-unsafe 1.327 36

sum01-unsafe 1.312 56

sum03-unsafe 1.291 46

sum04-unsafe 1.310 22

sum-array-unsafe 1.358 14

trex03-unsafe 1.358 21

sendmail-unsafe 1.396 77

vogal-unsafe 1.349 341

Fig. 16. Experiments with STADY: Bug detection

example, the downcast of a term t from integer to int (see
the rule τ -COERCE1 of Fig. 7) can be guarded by inserting
fassert(INT_MIN <= e && e <= INT_MAX) before the assignment
var_n = e.

Triggering errors during test generation. The function
fassert(cond) is a C macro defined by PATHCRAWLER that is
expanded as a conditional if(cond), testing if its parameter is
true. Covering all feasible paths of the program will therefore
enforce the generation of test inputs activating the then branch
of this condition, and test inputs activating the else branch. So
if there exist inputs such that cond is evaluated to false, a test
case activating the fassert thus violating the corresponding
annotation is generated. In other terms, a counter-example for
that annotation is generated if such inputs exist.

VII. EXPERIMENTAL RESULTS

The current implementation of STADY supports a sig-
nificant subset of E-ACSL including assertions, pre- and
postconditions, loop invaliants and variants, quantifications,
logic functions, integral and pointer types, and basic pointer
operations. Pointer validity is currenty supported only for input
arrays and pointers. STADY currently does not support assigns
clauses, \at terms, real numbers, as well as advanced memory-
related constructs (e.g. \offset), complex pointer arithmetics
such as p1-p2 or *(p-i) and dynamic memory allocation due
to the limitations of the underlying test generator.

To evaluate the efficiency of STADY in a combined ver-
ification approach (cf Sec. I), we applied it on safe and
unsafe programs from the TACAS 2014 Software Verification
Competition1 First, we executed STADY on 20 faulty programs
that handle arrays with loops. The properties to invalidate
originally expressed as C assertions, were manually rewrit-
ten in E-ACSL. Adequate E-ACSL preconditions were also
added. The programs containing infinite loops and reachability

1https://svn.sosy-lab.org/software/sv-benchmarks/trunk/c/loops

example mutants ¬ equiv. killed success rate

merge-sort 96 92 88 95.65%

merge-arrays 68 63 59 93.65%

quick-sort 130 130 130 100%

binary-search 40 40 39 97.5%

bubble-sort 52 49 42 85.71%

insertion-sort 39 37 36 97.3%

array-safe 18 16 15 93.75%

bubble-sort-safe 64 58 55 94.83%

count-up-down-safe 14 13 13 100%

eureka-01-safe 60 60 60 100%

eureka-05-safe 36 36 36 100%

insertion-sort-safe 43 41 40 97.56%

invert-string-safe 47 47 47 100%

linear-search-safe 19 17 16 94.12%

matrix-safe 30 27 25 92.59%

nc40-safe 20 20 20 100%

nec40-safe 20 20 20 100%

string-safe 65 65 65 100%

sum01-safe 14 14 13 92.86%

sum02-safe 14 14 11 78.57%

sum03-safe 10 10 10 100%

sum04-safe 14 14 10 71.43%

sum-array-safe 17 17 15 88.24%

trex03-safe 56 56 56 100%

sendmail-safe 31 31 31 100%

vogal-safe 71 68 67 98.53%

Total 1088 1054 1019 96.68%

Fig. 17. Experiments with STADY: Mutation testing

properties to invalidate are not handled by STADY due to the
necessity to execute the program in PATHCRAWLER. STADY

detected failures of all faulty properties in each considered
program. Fig. 16 illustrates the time taken to invalidate the
properties including all the steps of STADY: instrumenta-
tion from the E-ACSL specifications and test generation in
PATHCRAWLER, and the number of explored paths.

Secondly, we used mutation testing to evaluate the ability
of STADY to find bugs in unsafe programs. We selected
20 safe programs of the same benchmark, and 6 additional
safe programs from our own benchmarks. All of them were
annotated in E-ACSL. They contain preconditions, postcondi-
tions, assertions, memory-related properties, loop variants and
invariants. We used mutation testing on these safe programs
to generate modified programs (mutants) and see if STADY is
able to kill (i.e. to find errors in) these mutants. The mutations
performed on the source code mimic usual programming
errors. They include modifications of numerical and/or pointer
arithmetic operators, comparison operators, condition negation
and logical operators (and and or). Fig. 17 gives the numbers
of all and erroneous mutants, as well as the number and
proportion of erroneous mutants killed by STADY. STADY

showed an average success rate of 96.68%, going up to 100%
on many examples. The missing percents are mostly due to
a currently incomplete support of E-ACSL features by the
underlying test generation tool.

VIII. RELATED WORK

Cheon and Leavens [13], [17] presented a runtime checker
for JML (that have inspired ACSL) and proposed an original

https://svn.sosy-lab.org/software/sv-benchmarks/trunk/c/loops

way to handle the issue of undefinedness in assertions, and
present translation rules for the assertions. Our work continues
these efforts, but addresses the C language, focuses on trans-
lation for testing and considers a larger range of constructs
(including some memory-related constructs, invariants and
pre/postconditions).

Zee et al. [18] described a runtime checker for Jahob,
a verification system for a subset of Java. They discuss the
support of challenging constructs like quantifications, set com-
prehensions and previous program states (the old construct).
Contrary to ACSL, the annotation language they rely on can
express higher-order logic assertions (but their implementation
is restricted to first-order quantifiers). The set comprehension
feature is also present in ACSL, although not implemented
in our tool and not defined in our rules. Some details about
treating these features are discussed in [18] but their translation
rules are not detailed. Our work proposes a formal description
of the translation rules for testing.

Polikarpova et al. [19] presented a technique to generate
executions of programs annotated with Boogie specifications.
It exhibits test cases that are either counter-examples violating
the specification or test witnesses validating the specification
if no error has been exposed for the annotations. Compared to
ACSL, the Boogie intermediate verification language contains
additional constructs like nondeterministic assignments and
map applications, but it does not have critical features like
pointers. In their approach, the specification is not translated
into an executable language for execution, but is directly eval-
uated symbolically and concretely using symbolic execution
and SMT constraint solving, where the translation rules were
not formally presented. Following a similar objective, our
work offers a formalization of translation rules for C language
that allows a black-box use of a testing tool. This choice
facilitates tool integration and allows the user to use another
test generator to validate properties, like KLEE [20].

Delahaye et al. [5] discussed the first insights about the
translation of E-ACSL annotations into executable C programs.
Kosmatov et al. [15] focused on the memory model of the C
monitor and aimed at resolving the issue of memory-related E-
ACSL constructs and scaling. To the best of our knowledge, a
similar formalization of translation rules that allow to combine
formal verification and test generation for C programs has
never been presented before.

IX. CONCLUSION AND FUTURE WORK

In this paper, we have given a formal description of the
translation rules to derive executable C code from E-ACSL [5]
specification for testing. This formalization offers a strict and
easily reusable presentation of instrumentation-based support
of an expressive specification language during test generation.
Moreover, it constitutes a major step to formal verification of
correctness of the annotation translation, that is necessary to
ensure global correctness of derived combinations of static and
dynamic analyses sharing the same specification formalism.
Most parts of the formalization remain valid for RAC, and
we have emphasized specific issues (related to unbounded
integers, precondition of the FUT, memory-related constructs,
etc.) that are different. We have implemented this translation
in the STADY tool as part of the FRAMA-C [1] verification

framework. Our experiments show the efficiency of STADY

in providing more confidence in correctness, or in finding
counter-examples, for C programs according to an E-ACSL
specification. We believe that it can significantly facilitate the
specification and verification task in an incremental verifica-
tion approach combining deductive verification with testing.
Future work includes formal proof of correctness, support of
additional ACSL constructs like type invariants, data invariants
and lemmas, that will strongly rely on the predicate translation
presented in this paper, and further experiments with the
STADY tool on real-life C programs.

Acknowledgment. The authors thank the FRAMA-C and
PATHCRAWLER teams for providing the tools and support.
Special thanks to Alain Giorgetti for many fruitful discussions,
suggestions and advice.

REFERENCES

[1] P. Cuoq, F. Kirchner, N. Kosmatov, V. Prevosto, J. Signoles, and
B. Yakobowski, “Frama-C - a software analysis perspective,” in SEFM,
2012.

[2] P. Baudin, P. Cuoq, J. C. Filliâtre, C. Marché, B. Monate, Y. Moy,
and V. Prevosto, ACSL: ANSI/ISO C Specification Language, URL:
http://frama-c.com/acsl.html.

[3] G. Petiot, N. Kosmatov, A. Giorgetti, and J. Julliand, “How test
generation helps software specification and deductive verification in
Frama-C,” in TAP, 2014, to appear.

[4] L. Correnson and J. Signoles, “Combining analyses for C program
verification,” in FMICS, 2012.

[5] M. Delahaye, N. Kosmatov, and J. Signoles, “Common specification
language for static and dynamic analysis of C programs,” in SAC, 2013.

[6] B. Botella, M. Delahaye, S. Hong Tuan Ha, N. Kosmatov, P. Mouy,
M. Roger, and N. Williams, “Automating structural testing of C pro-
grams: Experience with PathCrawler,” in AST, 2009.

[7] K. Sen and G. Agha, “CUTE and jCUTE: concolic unit testing and
explicit path model-checking tools,” in CAV, 2006.

[8] M. Delahaye and N. Kosmatov, “A late treatment of C precondition in
dynamic symbolic execution testing tools,” in RV, 2013.

[9] B. Meyer, Object-Oriented Software Construction. Prentice-Hall, 1988.

[10] P. Chalin, “Engineering a sound assertion semantics for the verifying
compiler,” IEEE Trans. Software Eng., vol. 36, pp. 275–287, 2010.

[11] B. Konikowska, A. Tarlecki, and A. Blikle, “A three-valued logic for
software specification and validation,” Fundam. Inform., pp. 411–453,
1991.

[12] C. Dross, P. Efstathopoulos, D. Lesens, D. Mentré, and Y. Moy, “Rail,
space, security: Three case studies for SPARK 2014,” in Proc. ERTS,
2014.

[13] Y. Cheon, “A runtime assertion checker for the java modeling language,”
Ph.D. dissertation, Iowa State Univ., 2003.

[14] C. Boyapati, S. Khurshid, and D. Marinov, “Korat: Automated testing
based on java predicates,” in ISSTA, 2002.

[15] N. Kosmatov, G. Petiot, and J. Signoles, “An optimized memory
monitoring for runtime assertion checking of C programs,” in RV, 2013.

[16] O. Chebaro, M. Delahaye, and N. Kosmatov, “Testing inexecutable
conditions on input pointers in C programs with SANTE,” in ICSSEA,
2012.

[17] Y. Cheon and G. T. Leavens, “A contextual interpretation of undefined-
ness for runtime assertion checking,” in AADEBUG, 2005.

[18] K. Zee, V. Kuncak, M. Taylor, and M. Rinard, “Runtime checking for
program verification,” in RV, 2007.

[19] N. Polikarpova, C. A. Furia, and S. West, “To run what no one has run
before: Executing an intermediate verification language,” in RV, 2013.

[20] C. Cadar, D. Dunbar, and D. Engler, “KLEE: unassisted and automatic
generation of high-coverage tests for complex systems programs,” in
OSDI, 2008.

	Motivation
	Instrumentation Process
	Overview of the E-ACSL Specification Language
	Integers
	Undefinedness

	Handling Unbounded Integers
	Running Example
	Principles of the Instrumentation

	Term Translation
	Predicate Translation
	Annotation Translation
	Instrumentation for Test Generation vs Runtime Assertion Checking
	Experimental Results
	Related Work
	Conclusion and Future Work
	References

